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Abstract. Secure function evaluation (SFE) allows a set of players to compute
an arbitrary agreed function of their private inputs, even if an adversary may
corrupt some of the players. Secure multi-party computation (MPC) is a general-
ization allowing to perform an arbitrary on-going (also called reactive or stateful)
computation during which players can receive outputs and provide new inputs at
intermediate stages.
At Crypto 2006, Ishai et al. considered mixed threshold adversaries that either
passively corrupt some fixed number of players, or, alternatively, actively corrupt
some (smaller) fixed number of players, and showed that for certain thresholds,
cryptographic SFE is possible, whereas cryptographic MPC is not.
However, this separation does not occur when one considers perfect security. Ac-
tually, past work suggests that no such separation exists, as all known general
protocols for perfectly secure SFE can also be used for MPC. Also, such a sepa-
ration does not show up with general adversaries, characterized by a collection
of corruptible subsets of the players, when considering passive and active corrup-
tion.
In this paper, we study the most general corruption model where the adversary is
characterized by a collection of adversary classes, each specifying the subset of
players that can be actively, passively, or fail-corrupted, respectively, and show
that in this model, perfectly secure MPC separates from perfectly secure SFE.
Furthermore, we derive the exact conditions on the adversary structure for the
existence of perfectly secure SFE resp. MPC, and provide efficient protocols for
both cases.

1 Introduction

1.1 Secure Function Evaluation and Secure Multi-Party Computation

Secure function evaluation (SFE) allows a set P = {p1, . . . , pn} of n players to com-
pute an arbitrary agreed function f of their inputs x1, . . . , xn in a secure way. Security
means that dishonest players can neither falsify the output of the computation, nor ob-
tain information about the honest players’ inputs (except what they can derive from their
own inputs and outputs). (Reactive) secure multi-party computation (MPC) is a gener-
alization of SFE. Here, the function to be computed is reactive, meaning that players
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can give inputs and get outputs several times during the course of the computation, and
every output can depend on all inputs given so far.

A bit more formally, SFE and MPC can be best described by considering a hypo-
thetical trusted party which performs the specified task on behalf of the players. In SFE,
the trusted party is non-reactive: it takes inputs from the players, evaluates the function,
and announces the outputs (and disappears). In MPC, the trusted party is reactive: it
continuously interacts with the players, taking inputs and sending outputs. It maintains
an internal state which is updated with every input, and every output is computed based
on this state. The goal of SFE and MPC is to simulate this trusted party among the
set P of players. The potential dishonesty of players is modeled by a central adver-
sary corrupting players, where players can be actively corrupted (the adversary takes
full control over them), passively corrupted (the adversary can read their internal state),
or fail-corrupted (the adversary can make them crash at any suitable time). A crashed
player stops sending any messages, but the adversary cannot read the internal state of
the player (unless he is actively or passively corrupted at the same time).

Typical examples of SFE include e-voting, i.e., the computation of the sum of the
players’ secret votes, or the double-agent problem, i.e., the identification of identical
entries in several confidential databases. An example of MPC is the simulation of a fair
stock market, where inputs (e.g. new trading orders) are given and outputs (e.g. current
stock prices) are provided while the computation proceeds.

SFE (and MPC) was introduced by Yao [Yao82]. The first general solutions were
given by Goldreich, Micali, and Wigderson [GMW87]; these protocols are secure un-
der some intractability assumptions. Later solutions [BGW88, CCD88, RB89, Bea91b]
provide information-theoretic security.

1.2 Summary of Known Results

In the seminal papers solving the general SFE and MPC problems, the adversary is
specified by a single corruption type (active or passive) and a threshold t on the toler-
ated number of corrupted players. Goldreich, Micali, and Wigderson [GMW87] proved
that, based on cryptographic intractability assumptions, general secure MPC is pos-
sible if and only if t < n/2 players are actively corrupted, or, alternatively, if and
only if t < n players are passively corrupted. In the information-theoretic model, Ben-
Or, Goldwasser, and Wigderson [BGW88] and independently Chaum, Crépeau, and
Damgård [CCD88] proved that unconditional security is possible if and only if t < n/3
for active corruption, and for passive corruption if and only if t < n/2.

These results were unified and extended by fail-corruption in [FHM98] by proving
that perfectly secure MPC is achievable if and only if 3ta + 2tp + tf < n, where ta, tp,
and tf denote the upper bounds on the number of actively, passively, and fail-corrupted
players, respectively.

Another line of generalization is concerned with so-called general adversaries:
Here, the adversary is not characterized by a threshold, but rather by an enumera-
tion of the possible subsets of players that the adversary can corrupt.1 In [HM97] (see

1 This allows to model non-symmetric settings where not every player’s potential dishonesty is
modeled in exactly the same way. Some coalitions of colluding players might be more likely
than others, and some players might have a higher level of dishonesty than others.



MPC vs. SFE: Perfect Security in a Unified Corruption Model 233

also [HM00]) it was proved that perfect security is possible if and only if no two cor-
ruptible subsets cover the full players set (passive adversary), respectively no three cor-
ruptible subsets cover the full player set (active adversary). These results naturally gen-
eralize the threshold results of 2t < n, respectively 3t < n. These results were unified
to a mixed general adversary in [FHM99], where the adversary is characterized by an
enumeration of classes, each class consisting of an actively corruptible subset of play-
ers and of a passively corruptible subset of players. Fail-corruption was not considered.
The bounds on the existence of perfectly secure MPC are a natural combination of the
bounds in the threshold model.

A similar development of generalizations (from threshold to general adversaries)
can be observed in the area of Byzantine agreement protocols [LSP82, DS82, LF82,
MP91, GP92, FM98, AFM99].

Recently, Ishai et al. [IKLP06] considered a mixed model in which the adversary
can either corrupt ta players actively, or, alternatively, tp players passively (in contrast
to previous work [FHM98], where the adversary could corrupt ta players actively, and,
simultaneously, tp players passively). They showed that for tp < n and ta < n/2
cryptographically secure SFE is possible, whereas, for tp = n− 1 and ta ≥ 1, crypto-
graphically secure (reactive) MPC is not possible.

1.3 Contributions of this Paper

The original motivation for this paper was to determine the exact conditions for SFE
and MPC in the natural and most general adversary model where all corruption types
can occur. We characterize the adversary’s corruption capability by an adversary struc-
ture Z = {(A1, E1, F1), . . . , (Am, Em, Fm)}, where Ak, Ek, Fk ⊆ P and Ak ⊆ Ek

and Ak ⊆ Fk. The adversary can (secretly) choose an arbitrary adversary class
Zk = (Ak, Ek, Fk) ∈ Z and actively corrupt the players in Ak, passively corrupt
the players in Ek, and fail-corrupt the players in Fk. In the technical sections of this pa-
per, we present and prove exact conditions on the adversary structure to allow perfectly
secure MPC and perfectly secure SFE. This unifies all previously considered models,
where either not all three types of corruption were considered, or where the corruption
capability was specified in terms of thresholds.

Interestingly, the conditions for SFE and MPC are different. This is surprising since
all known results on perfectly secure protocols suggest no such separation. In fact, a
first separating example was observed by Almann [Alt99]. In particular, when consid-
ering active, passive, and fail-corruption (but only threshold type), then no such sepa-
ration has been observed [FHM98]. When considering general adversaries (with active
and passive corruption, but without fail-corruption), no separation can be observed nei-
ther [FHM99]. However, in the combination of both these models, the separation shows
up. This indicates that the most general adversary model considered here is both natural
and appropriate, since all restricted models hide the fact that SFE and MPC separate.

We describe a simple example of an adversary structure which separates, i.e., for
which SFE with perfect security is possible but MPC is not. Let P = {p1, p2, p3, p4}
and Z = {Z1, Z2, Z3}, where Z1 = (∅, {p1}, ∅), Z2 = ({p2}, {p2}, {p2, p4}), and
Z3 = ({p3}, {p3}, {p3, p4}). In other words, the adversary can either corrupt p1
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passively, or corrupt p2 actively and fail-corrupt p4, or corrupt p3 actively and fail-
corrupt p4.2

A protocol for SFE works as follows: First use p4 as trusted party with the constraint
that p4 sends the output of the function first to p1 and then to p2 and p3. If p4 crashes,
then restart the protocol using p1 as trusted party (the crashing of p4 guarantees that the
adversary did not choose Z1 ∈ Z and hence that p1 is uncorrupted). If p1 has received
the output from p4 before p4 crashed, then he forwards it to p2 and p3, otherwise he
evaluates the function on the inputs received by p2 and p3 and sends them the output.
The security of this protocol is trivial to verify. The impossibility of MPC for this ex-
ample follows from the observation that if some intermediate value v — part of the
state of an MPC protocol — is not known to p1, then there is no protocol that always
reveals it to him. Indeed, if in such a protocol the adversary crashes p4 and forces p2 or
p3 to send random messages whenever he is instructed to send something (she can do
so by choosing Z2 or Z3), then with non-zero probability, p1 will not be able to decide
whether p2 or p3 is misbehaving and will accept a value different than v, contradicting
perfect security.

2 The Model

We consider the standard secure-channels model introduced in [BGW88, CCD88]: The
players p1, . . . , pn are connected by a complete network of bilateral synchronous secure
channels. The computation is described as an arithmetic circuit over some finite field F,
consisting of addition (or linear) gates and multiplication gates.

The security of our protocols is information-theoretic without error probabil-
ity, which is called perfect security and is the strongest possible security notion.
A protocol is defined to be secure if it realizes a trusted functionality (computing
the function f ), where the term “realize” is defined via the simulation paradigm
[Can00, MR91, Bea91a, DM00, PW01] which, in a nutshell, guarantees that whatever
the adversary can achieve in the real world where the protocol is executed, she could
also achieve in the ideal setting with the trusted functionality.3 This security notion im-
plies in particular that the adversary cannot obtain any information about the players’
inputs beyond what is implied by the outputs (secrecy), and that she cannot influence
the outputs other than by choosing the inputs of the corrupted players (correctness).

The adversary’s corruption capability is characterized by an adversary structure
Z = {(A1, E1, F1), . . ., (Am, Em, Fm)} (for some m). The adversary chooses a triple
in Z non-adaptively,4 i.e., before the beginning of the protocol; this triple is denoted
as Z? = (A?, E?, F ?) and is called the actual adversary class or simply the actual

2 Additionally, Z4 = ({p4}, {p4}, {p4}) could be tolerated, but this would unnecessarily com-
plicate the example.

3 While our protocols can be proven secure in any of these simulation-based frameworks, with
perfect indistinguishability of the real and the ideal world, we will in this paper not give full-
fledged simulation-based security proofs; this is consistent with the previous literature on se-
cure SFE and MPC.

4 In contrast, an adaptive adversary can corrupt more and more players during the protocol
execution, subject only to the constraint that the corrupted sets are within one of the triples
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adversary. The players in A?, E?, and F ? are actively, passively, and fail-corrupted,
respectively. Note that Z? is not known to the honest players and appears only in the
security analysis. A protocol is called Z-secure if it is secure against an adversary with
corruption power characterized by Z .

For notational simplicity we assume that A ⊆ E and A ⊆ F for any (A,E, F ) ∈
Z (anyway, an actively corrupted player can behave as being passively or fail-
corrupted). Furthermore, as most constructions only need to consider the maximal
classes of a structure, we define the maximal structure Z =

{
(A,E, F ) ∈ Z :

6 ∃(A′, E′, F ′) ∈ Z with (A,E, F ) 6= (A′, E′, F ′) and A ⊆ A′, E ⊆ E′, F ⊆ F ′}.
To simplify the description, we adopt the following convention: Whenever a player

does not receive a message (when expecting one), or receives a message outside of the
expected range, then the special symbol ⊥6∈ F is taken for this message. Note that after
a player has crashed, he only sends ⊥. If a player has followed the protocol instruc-
tions correctly up to a certain point, he is called correct at that point, independently of
whether he is actually corrupted. A player who has deviated from the protocol (e.g., has
crashed or has sent inconsistent messages) is called incorrect.

3 Tools (Sub-protocols)

In this section we present some protocols that are used as building blocks in the main
sections. Several of these protocols are non-robust, i.e., they might abort when faults
occur. In case of abortion, all (correct) players agree on a non-empty set B ⊆ P of
incorrect players; we say then that the protocol aborts with B.

3.1 Broadcast and Consensus

A broadcast protocol allows a sender p with input value v to distribute v among a set
P of players, where it is guaranteed that all correct players in P output the same value
v′ (consistency), and that v′ = v when the sender is correct during the execution of
the protocol (correctness). Similarly, a consensus protocol allows a set P of players,
each holding an input value vi, to reach agreement, such that every correct player in P
outputs the same value v′ (consistency), and that v′ = v if all (correct) players hold as
input v (correctness).

In [AFM99] a tight condition for the existence of perfectly-secure broadcast and
consensus is given for the model with active and fail-corruption. Those protocols as-
sume pairwise authenticated (but not necessarily private) channels, hence they remain
secure even when the adversary is allowed to passively corrupt any number of players.
Therefore these conditions immediately translate to our model:

Lemma 1. In the secure channels model, perfectly Z-secure broadcast and consensus
among a set P of players is possible if and only if CBC(P,Z) holds, where

CBC(P,Z) ⇐⇒
{
∀(A1, E1, F1), (A2, E2, F2), (A3, E3, F3) ∈ Z :

A1 ∪A2 ∪A3 ∪ (F1 ∩ F2 ∩ F3) 6= P.

inZ . We do not consider the adaptive setting in this paper, but our results could be generalized
to it.
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We denote the broadcast and the consensus protocol of [AFM99] by Broadcast and
Consensus, respectively.

3.2 Crash Detection

We present a protocol which allows the players in P to commonly detect whether a
specific player p ∈ P is alive or has crashed. Such a decision cannot be sharp, as
an actively corrupted player can always behave as having crashed, i.e., not send any
messages during the execution of the protocol. However, we require that correct players
are always identified as “alive”, and crashed players are always identified as “crashed”.

Protocol CDP(P, Z, p)
1. p sends a 1-bit to every pj ∈ P .
2. Every pj ∈ P sets bj := 1 if he received a 1-bit, and bj := 0 otherwise.
3. The players in P invoke Consensus on inputs b1, . . . , bn.
4. Every pj ∈ P outputs “alive” when the output of the consensus protocol is 1, and

“crashed” otherwise.

Lemma 2. If CBC(P,Z) holds, then the protocol CDP(P,Z, p) has the following
properties: Consistency: The (correct) players agree on the output. Correctness: If p
is correct until the end of CDP, then every (correct) player outputs “alive” and if p has
crashed before the invocation of CDP, then every (correct) player outputs “crashed”.5

Proof. Correctness: When p is correct, then every (correct) pj ∈ P sets bj := 1 and,
by definition of consensus, all correct players decide on 1 and output “alive”. When p
has crashed before CDP is invoked, then every correct pj ∈ P sets bj := 0, and hence
all correct players output “crashed”. Consistency: As the output is decided by using
consensus, the output of all correct players is identical. ut

3.3 Strong Broadcast

Intuitively, a fail-corrupted player never sends a “wrong” message; in the worst case,
he sends no message at all. This intuition does not apply to broadcast (according to the
standard definition): When the sender of a broadcast protocol crashes, only consistency
of the output is guaranteed. But the output value can be arbitrary.6

We lift the intuition that fail-corrupted players never send “wrong” messages to
broadcast by introducing the notion of strong broadcast: A protocol with sender p,
holding input v, achieves strong broadcast when it achieves broadcast and additionally
ensures that the output is in {v,⊥} when the sender is not actively corrupted. We show
how to construct a protocol for p to strongly broadcast v, given a protocol for broadcast
(e.g., Broadcast) and CDP.

5 Note that in any case the adversary learns the output of CDP.
6 In [AFM99], the output of broadcast can even be chosen by the adversary, when the sender

crashes.
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Protocol StrongBroadcast(P, Z, p, v)
1. Invoke Broadcast to have p broadcast his input v. For each pj ∈ P , let vj denote

pj’s output in Broadcast.
2. Invoke CDP to detect whether p is alive or has crashed.
3. Every pj ∈ P outputs vj when p is alive, and ⊥ when p has crashed.

Lemma 3. If CBC(P,Z) holds, then the protocol StrongBroadcast(P,Z, p, v) has the
following properties: Consistency: All (correct) players output the same value v′. Cor-
rectness: If the sender p is correct, then v′ = v; if p crashed before the invocation of
the protocol, then v′ =⊥; if p crashes during the protocol, then v′ ∈ {v,⊥}.

Proof. Consistency follows immediately from the consistency property of Broadcast
and the consistency property of CDP. For correctness we consider 3 cases: (a) If
the sender p is correct through the whole protocol, then the consistency property of
Broadcast implies that for all correct pj’s, vj = v and the correctness property of
CDP implies that all correct players will output “alive” in CDP, hence they will all
output v in StrongBroadcast. (b) If p has already crashed before the invocation of
StrongBroadcast, then this is detected in Step 2 (by CDP) and the protocol outputs
⊥. (c) If p crashes during the protocol but is correct up to that point, then either this
is detected in Step 2 and the protocol outputs ⊥, or p is still alive at the beginning of
Step 2 and has correctly broadcast his input v. Since, when p is not actively-corrupted
one of the above 3 cases must hold, the output of StrongBroadcast for such a p is al-
ways in {v,⊥}. ut

3.4 Secret Sharing

A secret-sharing scheme allows a player (called the dealer) to distribute a secret, in such
a way that only qualified sets of players can reconstruct it. As secret-sharing scheme,
we employ a sum sharing (i.e., the secret is split into summands that add up to the
secret), folded with a replication sharing (i.e., every summand is given to a subset of
the players): Such a sharing is characterized by a sharing specification S , which is
a vector of subsets of the player set P . A value s is shared with respect to a sharing
specification S = (S1, . . . , Sm), when there exist summands s1, . . . , sm with s =∑

sk, and sk is given to every pi ∈ Sk. For a player pi ∈ P , we consider the vector
(si1 , . . . , si`

) of summands held by pi to be pi’s share of s, denoted as 〈s〉i. The vector
of all shares, denoted as 〈s〉 =

(
〈s〉1, 〈s〉2, . . . , 〈s〉n

)
, is a sharing of s. We say that

〈s〉 is a (consistent) sharing of s according to (P,S), if for each Sk ∈ S all (correct)
players in Sk have the same view on sk and s =

∑m
k=1 sk.

For an adversary structure Z , we say that a sharing specification S is Z-private
if for any sharing 〈s〉 according to S and for any adversary in Z , there exists a sum-
mand sk which this adversary does not know. Formally, S is Z-private if ∀(A,E, F) ∈
Z ∃S ∈ S : S ∩ E = ∅. For an adversary structure Z with maximal classes
Z =

{
(·, E1, ·), . . . , (·, Em, ·)

}
, we denote the natural Z-private sharing specification

by SZ =
(
P\E1, . . . ,P\Em

)
.

In the following, we describe the protocol Share which allows a dealer p to share a
value s among the players in P according to a sharing specification S. The protocol is
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a modification to tolerate fail-corruption of the sharing protocol from [Mau02]. It may
abort when p is incorrect.

Protocol Share(P, Z, S, p, s)
1. Dealer p chooses the summands s2, . . . , s|S| randomly and sets

s1 := s−
∑|S|

k=2 sk.
2. Execute the following steps for k = 1, . . . , |S|:

(a) p sends sk to every pi ∈ Sk, who denotes the received value as s
(i)
k (⊥ when

no value is received).
(b) Every pi ∈ Sk sends s

(i)
k to every pj ∈ Sk, who denotes the received value

as s
(i,j)
k .

(c) For each pj ∈ Sk StrongBroadcast is invoked to have pj broadcast a com-
plaint bit bk,j , where bk,j = 1 when s

(j)
k =⊥ or s

(i,j)
k /∈ {s(j)

k ,⊥} for some
i, and bk,j = 0 otherwise.

(d) If a complaint was reported (i.e., bk,j = 1 for some j), then StrongBroadcast

is invoked to have p broadcast sk, and every pj ∈ Sk sets s
(j)
k to the broad-

casted value.
3. If p broadcasts ⊥ in Step 2d, then Share aborts with B = {p}.

Lemma 4. If CBC(P,Z) holds and S is a Z-private sharing specification, then the
protocol Share (P,Z,S, p, s) has the following properties. Correctness: Share either
outputs a consistent sharing of some s′, where s′ = s unless the dealer is actively
corrupted, or it aborts with B = {p}; it does not abort if p is correct. Secrecy: No
information on s leaks to the adversary.

Proof. Correctness: The consistency of the sharing is guaranteed because correct play-
ers either hold the same value for a common summand, or they complain and get a
consistent value for the summand by strong broadcast. Because all sent and broad-
casted summands are sk such that s =

∑
sk it is clear that the shared value is s when

the dealer is correct. Lastly, the protocol only aborts when the dealer is incorrect in
an invocation of StrongBroadcast. Secrecy: Because S is Z-private we know that the
summands of corrupted players do not reveal information on s. On the other hand, the
dealer only broadcasts summands for which a complaint is broadcast, i.e., two players
(claim to) have different values for that summand. This only happens when the dealer
or one of the disputing players is actively corrupted, or when the dealer has crashed. In
the first case, the adversary is entitled to know the summand, and in the second case,
the summand will not be broadcasted (the dealer has crashed). ut

Reconstructing a shared value towards a player is straight-forward: All players send
the summands they know (i.e., their share) to the output player, who tries to find the
correct value for each summand and computes the secret as the sum of the summands.
However, finding the correct value of a summand is not always possible when corrupted
players send wrong values or no value to the output player. So we need an extra con-
dition on the adversary structure to ensure that the output player can always decide on
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the value of every summand. We can slightly relax this condition when a sharing is
reconstructed publicly (rather than towards a dedicated output player): In this case, the
players can decide, depending on the published values, whether a summand is uniquely
defined or not, and if not, agree on a set B ⊆ P of incorrect players.

In the sequel, we present the protocols Announce and Reconstruct to announce a
summand, respectively reconstruct a sharing, towards a dedicated player, and the pro-
tocols PublicAnnounce and PublicReconstruct to announce a summand, respectively
to reconstruct a sharing, towards all players. The latter protocols are non-robust; they
might abort with a non-empty set B ⊆ P of incorrect players. The abortion of the pro-
tocol PublicAnnounce will allow to derive information on the actual adversary class,
which will be helpful in the output protocol of SFE.

Protocol Announce(P, Z, Sk, sk, p)
1. Every pi ∈ Sk sends sk to p, who denotes the received value as s

(i)
k (⊥ when no

value is received).
2. Let V ⊆ F denote the set of values v that are “explainable” with some adversary

in Z , i.e., for which there is an adversary class (A,E, F ) ∈ Z , such that {pi ∈
Sk : s

(i)
k =⊥} ⊆ F and {pi ∈ Sk : s

(i)
k /∈ {v,⊥}} ⊆ A.

3. p sets sk to be the smallest element in V .

Lemma 5. If ∀(A1, E1, F1), (A2, E2, F2) ∈ Z: Sk 6⊆ A1 ∪ A2 ∪ (F1 ∩ F2), then the
protocol Announce robustly announces sk to p.

Proof. We have to prove that (i) the set V contains the correct summand sk and (ii)
the set V contains no other values. (i) Observe that the summands s

(i)
k received by p

satisfy that {pi ∈ Sk : s
(i)
k =⊥} ⊆ F ? and {pi ∈ Sk : s

(i)
k /∈ {sk,⊥}} ⊆ A?, where

(A?, E?, F ?) denotes the actual adversary class. As (A?, E?, F ?) ∈ Z , it follows that
sk ∈ V . (ii) Consider any value v ∈ V . There exists an adversary class (A,E, F ) ∈ Z
such that {pi ∈ Sk : s

(i)
k =⊥} ⊆ F and {pi ∈ Sk : s

(i)
k /∈ {v,⊥}} ⊆ A. By

assumption we know that Sk 6⊆ A∪A?∪ (F ∩F ?), hence there exists a player pi ∈ Sk

with s
(i)
k 6=⊥, pi /∈ A and pi /∈ A?. This implies that v = s

(i)
k = sk. ut

Protocol Reconstruct(P, Z, S, 〈s〉, p)
1. For every Sk ∈ S, Announce is invoked to have the correct summand sk an-

nounced towards p.
2. p computes s :=

∑|S|
k=1 sk and outputs s.

Lemma 6. If ∀k = 1, . . . , |S|, ∀(A1, E1, F1), (A2, E2, F2) ∈ Z: Sk 6⊆ A1 ∪ A2 ∪
(F1 ∩ F2), then the protocol Reconstruct robustly reconstructs s towards p.

The proof follows immediately from Lemma 5.
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Protocol PublicAnnounce(P, Z, Sk, sk)
1. Every pi ∈ Sk publishes his value for sk (denoted as s

(i)
k ) using StrongBroadcast.

2. Every pj ∈ P: determine the set V ⊆ F of values that are “explainable” with
some adversary in Z (see protocol Announce).

3. Every pj ∈ P: output sk ∈ V if |V | = 1, otherwise abort with B = {pi ⊆ Sk :
s
(i)
k =⊥}.

Lemma 7. If CBC(P,Z) holds and ∀(A1, ·, ·), (A2, ·, ·) ∈ Z: Sk 6⊆ A1 ∪ A2, then
the protocol PublicAnnounce either publicly announces sk, or aborts with a non-empty
set B ⊆ P of incorrect players. When it aborts, then there exists an adversary class
(A,E, F ) ∈ Z such that Sk ⊆ A? ∪A ∪ (F ? ∩ F ).

Proof. As V contains at least the correct summand sk (see proof of Lemma 5), it is clear
that PublicAnnounce either outputs sk or aborts. It remains to be shown that when it
aborts with B, then |B| > 0 and there exists an adversary class (A,E, F ) ∈ Z such that
Sk ⊆ A? ∪A∪ (F ? ∩ F ). Note that sk ∈ V , hence PublicAnnounce aborts only when
there exists a value v 6= sk with v ∈ V . This implies that there is an adversary class
(A,E, F ) ∈ Z with {pi ∈ Sk : s

(i)
k =⊥} ⊆ F and {pi ∈ Sk : s

(i)
k /∈ {v,⊥}} ⊆ A.

Because v 6= sk, we need {pi ∈ Sk : s
(i)
k 6=⊥} ⊆ A ∪ A?, which implies that

Sk ⊆ A? ∪ A ∪ (F ? ∩ F ). Furthermore, B must be non-empty, because otherwise
Sk ⊆ (A? ∪A) would hold, contradicting the assumption in the lemma. ut

Protocol PublicReconstruct(P, Z, S, 〈s〉)
1. For every Sk ∈ S, PublicAnnounce is invoked to have the correct summand

sk announced. If an invocation of PublicAnnounce aborts with B, then also
PublicReconstruct aborts with B.

2. Every pj ∈ P computes s :=
∑|S|

k=1 sk and outputs s.

Lemma 8. If CBC(P,Z) holds and ∀k = 1, . . . , |S|, ∀(A1, ·, ·), (A2, ·, ·) ∈ Z: Sk 6⊆
A1 ∪A2, then the protocol PublicReconstruct either publicly reconstructs s, or aborts
with a non-empty set B of incorrect players.

The proof follows immediately from Lemma 7.

3.5 Multiplication

We present a protocol for securely computing a sharing of the product of two shared
values. The protocol is a variation of the multiplication protocol of [Mau02], capturing
fail-corruptions. The multiplication protocol may abort when faults occur, with out-
putting a set B ⊆ P of incorrect players.

The idea of the protocol is the following: As s and t are shared according to S,
we can use the summands s1, . . . , s|S| and t1, . . . , t|S| to compute the product st as
st :=

∑|S|
k,`=1 skt`. To do so, each term xk,` = skt` of this sum is shared by every

player knowing both sk and t`. Then the players perform consistency checks on the
shared summands and compute the sum of the shared terms xk,`, which results in a
sharing of st.
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Protocol Mult(P, Z, S, 〈s〉, 〈t〉)
1. For every (Sk, S`) ∈ S × S, the following steps are executed:

(a) Every pi ∈ (Sk ∩ S`) computes the products xk,` := skt` and invokes
Share(P,Z,S, pi, xk,`); denote the resulting sharing as 〈x(i)

k,`〉.
(b) Let pi denote the player with the smallest index in (Sk ∩ S`). For every

pj ∈ (Sk ∩ S`), the difference 〈x(j)
k,`〉 − 〈x(i)

k,`〉 is computed and, by invoking
PublicReconstruct, reconstructed.

(c) If all differences are 0, then the sharing 〈x(i)
k,`〉 of pi is adopted as sharing

of xk,`, i.e., 〈xk,`〉 := 〈x(i)
k,`〉. Otherwise (i.e., some difference is non-zero),

PublicAnnounce is invoked to have both sk and t` announced, and a default
sharing 〈xk,`〉 of xk,` = skt` is created (e.g., the first summand is set to xk,`

and the other summands are set to 0).
2. Each player in P (locally) computes his share of the product st as the sum of his

shares of all terms xk,`.
3. If any of the invoked sub-protocols aborts with B, then also Mult aborts with B.

Lemma 9. Assume that S is a Z-private sharing specification, 〈s〉 and 〈t〉 are consis-
tent sharings according to S, CBC(P,Z) holds, and the following two conditions hold:
∀Sk, S` ∈ S,∀(A, ·, ·) ∈ Z : Sk ∩ S` 6⊆ A and ∀Sk ∈ S,∀(A1, ·, ·), (A2, ·, ·) ∈ Z :
Sk 6⊆ A1 ∪A2. Then the protocol Mult(P,Z,S, 〈s〉, 〈t〉) has the following properties.
Correctness: It either outputs a sharing of st according to (P,S) or it aborts with a
non-empty set B ⊆ P of incorrect players. Secrecy: No information on the inputs (i.e.,
on 〈s〉 and 〈t〉) leaks to the adversary.

Proof. Correctness: The conditions in the lemma are sufficient for all the invoked
sub-protocols (Share, PublicReconstruct, PublicAnnounce). The condition ∀Sk, S` ∈
S,∀(A, ·, ·) ∈ Z : Sk ∩ S` 6⊆ A ensures that every xk,` is known to at least one
player pi who is not actively corrupted; hence if no invocation of Share aborts and all
differences are zero, then the shared values are correct. Privacy: Due to the security of
Share, the invocations of Share do not leak information to the adversary. Furthermore,
PublicAnnounce is only invoked on summands sk, t` when two players in Sk ∩S` con-
tradict each other; at least one of these players is actively corrupted, hence the adversary
already knows sk, t` before PublicAnnounce is invoked. ut

3.6 Resharing

In the context of MPC, we will need to reshare shared values according to a different
sharing specification. The key idea is to have every summand sk in the original sharing
being reshared according to the new sharing specification, and then distributively add
the sharings of the summand, resulting in a new sharing of the original value.

In the following we describe the protocol Reshare(P,Z,S,S ′, 〈s〉).

Lemma 10. Assume that S ′ is a Z-private sharing specification, 〈s〉 is a consistent
sharing according to S, CBC(P,Z) holds, and for all (A1, ·, ·), (A2, ·, ·) ∈ Z the fol-
lowing two conditions hold: ∀Sk ∈ S : Sk 6⊆ A1∪A2 and ∀S′

k ∈ S ′ : S′
k 6⊆ A1∪A2.

Then the protocol Reshare(P,Z,S,S ′, 〈s〉) has the following properties. Correctness:
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Protocol Reshare(P, Z, S, S′, 〈s〉)
1. For every Sk ∈ S, the following steps are executed:

(a) Every pi ∈ Sk invokes Share(P,Z,S ′, pi, sk); denote the resulting sharing
as 〈s(i)

k 〉.
(b) Let pi denote the player with the smallest index in Sk. For every pj ∈ Sk, the

difference 〈s(j)
k 〉 − 〈s(i)

k 〉 is computed and, by invoking PublicReconstruct,
reconstructed.

(c) If all differences are 0, then the sharing 〈s(i)
k 〉 of pi is adopted as sharing

of sk, i.e., 〈sk〉 := 〈s(i)
k 〉. Otherwise (i.e., some difference is non-zero),

PublicAnnounce is invoked to have sk announced, and a default sharing 〈sk〉
of sk according to S ′ is created.

2. Every pi ∈ P (locally) computes the sum of his shares of all summands sk.
3. If any of the invoked sub-protocols aborts with B, then also Reshare aborts

with B.

It either outputs a sharing of s according to (P,S ′) or it aborts with a non-empty set
B ⊆ P of incorrect players. Secrecy: No information on the inputs (i.e., on 〈s〉) leaks
to the adversary.

Proof. Correctness: The conditions in the lemma are sufficient for all the invoked
sub-protocols (Share, PublicReconstruct, PublicAnnounce). The condition ∀Sk ∈
S,∀(A1, ·, ·), (A2, ·, ·) ∈ Z : Sk 6⊆ A1 ∪ A2 implies that ∀Sk ∈ S,∀(A, ·, ·) ∈
Z : Sk 6⊆ A, which ensures that every sk is known to at least one player pi who is not
actively corrupted; hence if no invocation of Share aborts and all differences are zero,
then the shared values are correct. Privacy: Due to the security of Share, the invoca-
tions of Share do not leak information to the adversary. Furthermore, PublicAnnounce
is only invoked on the summand sk when two players in Sk contradict each other; at
least one of these players is actively corrupted, hence the adversary already knows sk

before PublicAnnounce is invoked. ut

4 (Reactive) Multi-Party Computation

In this section we prove the necessary and sufficient condition on the adversary struc-
ture Z for the existence of perfectly Z-secure multi-party computation protocols. The
sufficiency of the condition is proved by constructing an MPC protocol.

Theorem 1. A set P of players can perfectly Z-securely compute any (reactive) com-
putation when CMULT(P,Z) and CREC(P,Z) hold, where

CMULT(P,Z) ⇐⇒
{
∀(A1, E1, F1), (A2, E2, F2), (A3, E3, F3) ∈ Z :

E1 ∪ E2 ∪A3 ∪ (F1 ∩ F2 ∩ F3) 6= P

CREC(P,Z) ⇐⇒
{
∀(A1, E1, F1), (A2, E2, F2), (A3, E3, F3) ∈ Z :

E1 ∪A2 ∪A3 ∪ (F2 ∩ F3) 6= P

The condition CMULT is needed for (non-robust) multiplication. The condition
CREC is needed for robust reconstruction.
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4.1 The MPC Protocol

The circuit C to be computed consists of input, addition, multiplication, and output
gates.7 The reactiveness of the computation is modeled by assigning to each gate a
point in time when it should be evaluated.

The circuit is evaluated in a gate-by-gate fashion, where for input, multiplication,
and output gates, the corresponding sub-protocol Share, Mult, and Reconstruct, respec-
tively, is invoked. Due to the linearity of the sharing, addition (or linear) gates can be
evaluated locally by the players.

The non-robustness of the used sub-protocols is addressed differently depending
on the type of the gate: When in an input gate the input player does not share his
input, the players just pick a default sharing of some pre-agreed default value. The
reconstruction protocol of the output gate is robust under the necessary condition for
MPC. The multiplication of shared values can abort (with a set B ⊆ P of incorrect
players). If this happens, the multiplication is retried in a smaller setting, namely with
the player set P ′ = P \ B and the adversary structure Z ′ which contains only those
adversary classes which are compatible with the fact that the players in B are incorrect.
More precisely, first both factors are re-shared to the new setting with P ′ and Z ′, then
the multiplication sub-protocol is invoked within this setting, and upon success, the
resulting sharing of the product is re-shared to the original setting with P and Z . This
process is repeated until the multiplication succeeds, and with each repetition, the active
player set P ′ becomes smaller.

For the sake of clarity, we introduce two operators on adversary structures: For a
set B ⊆ P , we denote by Z|B⊆F the sub-structure of Z that contains only adversaries
who can fail-corrupt all the players in B, i.e., Z|B⊆F = {(A,E, F ) ∈ Z : B ⊆ F}.
Furthermore, for a set P ′ ⊆ P , we denote by Z|P′ the adversary structure with all
classes in Z restricted to the player set P ′, i.e., Z|P′ = {(A ∩ P ′, E ∩ P ′, F ∩ P ′) :
(A,E, F ) ∈ Z}. As syntactic sugar, we write Z|B⊆F

P′ for (Z|B⊆F ) |P′ .
It immediately follows from the above definitions that when the players in B have

been detected to be incorrect, then the actual adversary Z? is in Z|B⊆F . Furthermore,
we exclude the players in B from the multiplication protocol, and the new setting is
P ′ = P \B and Z ′ = Z|B⊆F

P\B . One can easily verify that the conditions CBC, CMULT,
and CREC hold in (P \ B,Z|B⊆F

P\B ) when they hold in (P,Z), for an arbitrary B ⊆ P .
This results in the MPC protocol described below.

Lemma 11. The protocol MPC is perfectly Z-secure if CMULT(P,Z) and
CREC(P,Z) hold.

Proof (sketch). One can easily verify that the conditions in the lemma imply all con-
ditions required in the sub-protocols, hence the security of the MPC protocol follows
from the security of the sub-protocols. ut

7 This does not exclude probabilistic circuits, as a random gate can be simulated by having each
player input a random value and take the sum of those values as the output.
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Protocol MPC(P, Z, C)
1. Initialize the set of players detected as incorrect to P⊥ := ∅. Set the default

sharing specification S := SZ .
2. For every gate to be evaluated, do the following:

– Input gate for p: Invoke Share to have p share his input according to (P,S). If
Share aborts, then a default sharing of some pre-agreed default value is taken.

– Addition gate: Every pi ∈ P locally computes the sum of his respective
shares.

– Multiplication gate: Denote the sharings of the factors as 〈s〉 and 〈t〉, re-
spectively, and denote the set of active players as P ′ = P \ P⊥, the adver-
sary structure compatible with P⊥ being incorrect as Z ′ = Z|P⊥⊆F

P\P⊥
, and

the corresponding (Z ′-private) sharing specification as S ′ = SZ′ . Invoke
Reshare(P ′,Z ′,S,S ′, 〈s〉) and Reshare(P ′,Z ′,S,S ′, 〈t〉) to obtain the shar-
ings 〈s〉′ and 〈t〉′ for (P ′,S ′), respectively. Invoke Mult(P ′,Z ′, 〈s〉′, 〈t〉′)
to obtain a sharing 〈st〉′ of the product, according to (P ′,S ′). Invoke
Reshare(P ′,Z ′,S ′,S, 〈st〉′) to reshare this product according to (P,S).a If
any of the sub-protocols aborts with set B then set P⊥ := P⊥ ∪B and repeat
the gate.

– Output gate for p: Invoke Reconstruct to have the output reconstructed to-
wards p.

a Reshare outputs a sharing according to (P ′,S), which is trivially also a sharing according
to (P,S) since all players in P \ P ′ are incorrect.

4.2 Impossibility of MPC

In this section we prove that perfectly secure (reactive) MPC is not possible for some
circuits when CMULT(P,Z) or CREC(P,Z) is violated. We first prove that when
CMULT(P,Z) is violated, then even non-reactive computations cannot be securely
evaluated (Lemma 12). Secondly, we prove that when CREC(P,Z) is violated, then
the players in P cannot hold a secret joint state, which excludes the evaluation of (non-
trivial) reactive circuit (Lemma 13).

Lemma 12. If CMULT(P,Z) is violated, then there exist (even non-reactive) circuits
which cannot be evaluated perfectly Z-securely.

Proof. Consider P and Z with CMULT(P,Z) violated, and assume, to arrive at a con-
tradiction, that for every circuit C a perfectly Z-secure protocol exists. There exist
(A1, E1, F1), (A2, E2, F2), (A3, E3, F3) ∈ Z with E1∪E2∪A3∪(F1∩F2∩F3) = P .
Let F = F1 ∩ F2 ∩ F3, P ′ = P \ F , and for i = 1, 2, 3, let A′

i = Ai \ F
and E′

i = Ei \ F . The alleged protocol must also be perfectly secure for the player
set P ′ and the adversary structure (with only active and passive corruption) Z ′ =
{(A′

1, E
′
1), (A

′
2, E

′
2), (A

′
3, E

′
3)}, because one particular strategy of the adversary is to

fail-corrupt the players in F and make them crash at the very beginning of the protocol.
However, for (P ′,Z ′) perfectly secure (non-reactive) MPC protocols do not exist for
all circuits, as proven in [FHM99, Thm. 1]. ut
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Lemma 13. If CREC(P,Z) is violated, then the players cannot hold a secret joint state
with perfect security.

Proof. Consider P and Z with CREC(P,Z) violated, hence there exist (A1, E1, F1),
(A2, E2, F2), (A3, E3, F3) ∈ Z with E1 ∪ A2 ∪ A3 ∪ (F2 ∩ F3) = P . Without loss
of generality assume that E1 = {p1}, A2 = {p2}, A3 = {p3}, and F2 = F3 = {p4}.
We denote the view of pi as vi. To arrive at a contradiction, assume that these views
define a secret joint state v. Privacy requires that v1 does not determine v, hence there
exists a different state v′ 6= v which could be represented by the views (v1, v

′
2, v

′
3, v

′
4).

Now consider the following two cases: (i) The secret state is v, and the adversary cor-
rupts (A2, E2, F2) and makes p4 crash and p2 take a random view, which (with perhaps
negligible probability) could be v′2. (ii) The secret state is v′, and the adversary corrupts
(A3, E3, F3) and makes p4 crash and p3 take a random view, which (with perhaps negli-
gible probability) could be v3. In both cases, the views of the players are (v1, v

′
2, v3,⊥),

but the joint state is once v and once v′ 6= v, contradicting perfect security. ut

5 Secure Function Evaluation

In this section we prove the sufficient and necessary condition on the adversary structure
Z for the existence of perfectly Z-secure function evaluation protocols. The sufficiency
of the condition is proved by constructing an SFE protocol. Note that the condition for
SFE is weaker than the condition for MPC.

Theorem 2. A set P of players can perfectly Z-securely compute any function if and
only if CMULT(P,Z) and CNREC(P,Z) hold, where

CMULT(P,Z) ⇐⇒
{
∀(A1, E1, F1), (A2, E2, F2), (A3, E3, F3) ∈ Z :

E1 ∪ E2 ∪A3 ∪ (F1 ∩ F2 ∩ F3) 6= P

CNREC(P,Z) ⇐⇒
{
∃ an ordering

(
(A1, E1, F1), . . . , (Am, Em, Fm)) of Z s.t.8

∀i, j, k ∈ {1, . . . ,m}, i ≤ k : Ek ∪Ai ∪Aj ∪ (Fi ∩ Fj) 6= P

The condition CMULT is needed for (non-robust) multiplication. The condition
CNREC is needed for non-robust reconstruction. Essentially, the latter condition al-
lows for a reconstruction protocol in which the actual adversary gets information on
the output only once it cannot disturb the protocol anymore.

5.1 The SFE Protocol

Our SFE protocol follows the standard approach of SFE protocols, namely to first
secret-share all inputs, then to evaluate the circuit gate by gate, and then to recon-
struct the output. However, the protocol employs sharings which are not robustly re-
constructible. This means that the adversary can break down the computation in such a

8 Remember that Z denotes the maximum classes in Z . One can verify that such an ordering
exists for Z exactly if it exists for Z .
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way that all sharings are lost. As the circuit is non-reactive, we can handle such an abor-
tion by repeating the whole protocol, including the input stage. The correct players will
give the same inputs in every iteration, but the adversary might give different inputs.
However, in a failed iteration, the adversary does not get any information about any
secrets (more precisely, the adversary could perfectly simulate all messages received
within a failed iteration already beforehand), so the inputs chosen by the adversary in
the successful iteration are independent of the other players’ inputs.

Termination is guaranteed by the fact that whenever an iteration aborts, then a non-
empty set B ⊆ P of incorrect players is identified, and the next iteration will proceed
without these players. Hence the number of iterations is bounded by n.

The delicate task is the output protocol. For simplicity, we describe the protocol only
for a single public output s; however, it naturally extends to a vector ~s of several public
outputs, which then can be extended to capture private outputs with standard techniques
(the output player inputs a one-time pad used for perfectly blinding the private element
of the output vector).

The intuition of the output protocol is as follows: First observe that in our sharing,
the privacy against each adversary is protected by a particular summand. More pre-
cisely, for every adversary class (Ak, Ek, Fk) ∈ Z there exists a summand sk which is
given only to the players in Sk ∈ S with Sk ∩ Ek = ∅ (we even have Sk = P \ Ek).
As long as this summand is not published, an adversary of class (Ak, Ek, Fk) does not
obtain information about the output (from the point of view of the adversary, sk is a
perfect blinding of the output, and all other summands si are either known to the ad-
versary or are distributed uniformly). Second, observe that whenever the publishing of
some summand sk fails (i.e. the protocol PublicAnnounce aborts), then a set B ⊆ P of
incorrect players is identified. The information that the players in B are incorrect leaks
information about the actual adversary (A?, E?, F ?), namely that B ⊆ F ?. The key
idea of the output protocol is to publish the summands in such an order that whenever
PublicAnnounce aborts with B, then the information that the players in B are incorrect
excludes the possibility that the actual adversary is from a class whose summand has
already being published. In other words: If an adversary of class (Ai, Ei, Fi) could po-
tentially abort the announcing of the summand sk associated with the adversary class
(Ak, Ek, Fk), then the summand sk must be announced strictly before the summand si

is announced.

Let
(
(A1, E1, F1), . . . , (Am, Em, Fm)) denote an ordering of the maximum struc-

ture Z satisfying

∀1 ≤ i, j, k ≤ m, i ≤ k : Ek ∪Ai ∪Aj ∪ (Fi ∩ Fj) 6= P,

and let S denote the induced sharing specification S = (S1, . . . , Sm) with Sk = P\Ek.
Then the following protocol perfectly Z-securely publicly reconstructs a sharing 〈s〉
according to S, or aborts with a non-empty set B ⊆ P of incorrect players. Privacy
of the protocol is guaranteed under the assumption that those summands of 〈s〉 that are
unknown to the adversary are uniformly distributed. This is the case for all sharings in
our protocols.
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Protocol OutputGeneration(P, Z, S = (S1, . . . , Sm), 〈s〉)
1. For k = 1, . . . ,m, the following steps are executed sequentially:

(a) PublicAnnounce(P,Z, Sk, sk) is invoked to have the correct summand sk

published.
(b) If PublicAnnounce aborts with B, then OutputGeneration immediately

aborts with B.
2. Every pj ∈ P (locally) computes s :=

∑m
k=1 sk and outputs s.

Lemma 14. Assume that S is a Z-private sharing specification constructed as ex-
plained, CBC(P,Z) holds, the condition ∀Sk ∈ S, (A1, ·, ·), (A2, ·, ·) ∈ Z : Sk 6⊆
A1 ∪ A2 holds, and 〈s〉 is a consistent sharing according to S with the property that
those summands that are unknown to the adversary are randomly chosen. Then the pro-
tocol OutputGeneration either publicly reconstructs s, or it aborts with a non-empty
set B ⊆ P of incorrect players. If OutputGeneration aborts, then the protocol does not
leak any information on s to the actual adversary.

Proof. First observe that the pre-conditions of PublicAnnounce are satisfied. Second,
observe that by construction of S, we have ∀i, j, k ∈ {1, . . . ,m}, i ≤ k : (P\Sk)∪Ai∪
Aj∪(Fi∩Fj) 6= P. Now assume that the invocation of PublicAnnounce(P,Z, Sk, sk)
aborts with B ⊆ P . It follows from Lemma 7 that the actual adversary (A?, E?, F ?)
satisfies the property that there exists (Aj , Ej , Fj) ∈ Z such that Sk ⊆ A? ∪ Aj ∪
(F ? ∩ Fj). By the construction of S, no adversary class (Ai, Ei, Fi) ∈ Z with i ≤ k
satisfies this condition, hence the summand associated with the actual adversary has not
yet been announced. ut

In the following we describe the SFE protocol.

Protocol SFE(P, Z, C)
0. Let S = (P \ E1, . . . ,P \ Em) for the assumed ordering(

(A1, E1, F1), . . . , (Am, Em, Fm)
)

of Z .
1. Input stage: For every input gate in C, Share is invoked to have the input player

pi share his input xi according to S.a

2. Computation stage: The gates in C are evaluated as follows:
– Addition gate: Every pi ∈ P locally computes the sum of his respective

shares.
– Multiplication gate: Invoke Mult to compute a sharing of the product accord-

ing to S.
3. Output stage: Invoke OutputGeneration(P,Z,S, 〈s〉) for the sharing 〈s〉 of the

public output.
4. If any of the subprotocols aborts with B, then set P := P \ B, and set Z to

the adversary structure which is compatible with B being incorrect, i.e., Z :=
Z|B⊆F

P′ , and go to Step 1.

a If in a later iteration a player pi /∈ P should give input, then the players in P pick the default
sharing of a default value.
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Lemma 15. The above SFE protocol is perfectly Z-secure if CMULT(P,Z) and
CNREC(P,Z) hold.

Proof (sketch). One can easily verify that the conditions in the lemma imply all condi-
tions required in the sub-protocols, hence the security of the SFE protocol follows from
the security of the sub-protocols.
Special care needs to be taken for the fact that the adversary can abort the protocol and
provoke repetitions. Termination of this process is obvious, as in every repetition the
player set shrinks. Also correctness is straight-forward. Privacy is argued as follows:
The adversary can perfectly simulate his view in every iteration which aborts (even
without knowing the public output), hence his capability to abort an iteration does not
give him any additional power. ut

5.2 Impossibility of SFE

In this section we prove that perfectly Z-secure SFE is not possible for some circuits
when CMULT(P,Z) or CNREC(P,Z) is violated. The necessity of CMULT(P,Z) fol-
lows immediately from Lemma 12. It remains to show that CNREC(P,Z) is necessary:

Lemma 16. If CNREC(P,Z) is violated, then there exist functions which cannot be
evaluated perfectly Z-securely.

Proof. Consider P and Z with CNREC(P,Z) violated, i.e., for every ordering(
(A1, E1, F1), . . . , (Am, Em, Fm)) of Z there exists i, j, k ∈ {1, . . . ,m} such that

i ≤ k and Ek ∪Ai ∪Aj ∪ (Fi ∩ Fj) = P . Consider the identity function, where every
player pi ∈ P inputs some value xi, and the public output is the vector (x1, . . . , xn). To
arrive at a contradiction, assume that there exists a perfectly Z-secure SFE protocol for
this function. This protocol implicitly defines for every set L ⊆ P the protocol round in
which the players in L obtain full joint information about the output. We denote the in-
dex of this round as φ(L), i.e., the joint view of the players in L in round φ(L) gives full
information on (x1, . . . , xn), but their joint view in round φ(L) − 1 does not give full
information. The function φ implies an ordering

(
(A1, E1, F1), . . . , (Am, Em, Fm)

)
on the adversary classes in Z such that for every 1 ≤ i ≤ k ≤ m : φ(Ei) ≤ φ(Ek).
Denote by i, j, k those indices that satisfy i ≤ k and Ek ∪ Ai ∪ Aj ∪ (Fi ∩ Fj) = P
(which are assumed to exist for contradiction). The adversary corrupts (Ai, Ei, Fi) and
behaves as follows: Up to round φ(Ei) − 1, the adversary lets the corrupted players
behave correctly. In round φ(Ei), the adversary crashes the players in Fi ∩ Fj , and has
the players in Ai \ (Fi ∩ Fj) send random values (also in all subsequent rounds). Still,
the adversary obtains full information on the output in round φ(Ei) (she knows all cor-
rect messages that were sent, respectively should have been sent to the players in Ei).
However, the players in Ek do not have full information before round φ(Ek) ≥ φ(Ei).
Hence these players cannot with certainty distinguish the current situation from the situ-
ation when the output vector would be different, the players in class (Aj , Ej , Fj) would
be corrupted, those in Fj ∩Fi would be crashed, and those in Aj \(Fj ∩Fi) would send
random messages. Hence the adversary has obtained full information about the output
vector, but some uncorrupted players do not, contradicting perfect security. ut
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6 Conclusions and Open Problems

We have considered an adversary whose corruption capability is described by a collec-
tion Z of adversary classes (A,E, F ), where the adversary may actively corrupt the
players in A, passively corrupt the players in E, and fail-corrupt the players in F . This
model unifies all corruption models considered in the literature. Indeed, all these models
are special cases of our model, in the sense that they consider either not all corruption
types, or only threshold corruption.

For this general adversary model, we have derived exact conditions for the exis-
tence of perfectly secure multi-party computation (MPC) and secure function eval-
uation (SFE). It turned out that the condition for SFE is strictly weaker than the
condition for MPC. In fact, there are simple adversary structures for which per-
fectly secure SFE is possible, but perfectly secure MPC and verifiable secret shar-
ing are not possible. This separation does not show up in the restricted models con-
sidered so far. The following theorem states this separation. It follows immediately
from the separating example in the introduction with P = {p1, p2, p3, p4} and Z ={
(∅, {p1}, ∅), ({p2}, {p2}, {p2, p4}), ({p3}, {p3}, {p3, p4})

}
.

Theorem 3. Perfectly secure MPC and SFE separate, i.e., there exist P and Z such
that perfectly Z-secure SFE among the players in P is possible, whereas perfectly Z-
secure MPC is not.

This paper considers only protocols with perfect security, and does not handle the
cases of unconditional (i.e., information theoretic with error probability) or crypto-
graphic security. In particular, the proofs of Lemmata 13 and 16 exploit the fact that
not even small error probability is allowed. Hence, the proof of separation does not
carry over to unconditional or cryptographic security. Moreover, the exact bounds for
Z-secure MPC and SFE in these models are not known yet.
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