
MPC vs. SFE :
Unconditional and Computational Security?

Martin Hirt, Ueli Maurer, and Vassilis Zikas

Department of Computer Science, ETH Zurich, 8092 Zurich, Switzerland
{hirt,maurer,vzikas}@inf.ethz.ch

Abstract. In secure computation among a set P of players one considers an ad-
versary who can corrupt certain players. The three usually considered types of cor-
ruption are active, passive, and fail corruption. The adversary’s corruption power is
characterized by a so-called adversary structure which enumerates the adversary’s
corruption options, each option being a triple (A, E, F) of subsets of P , where the
adversary can actively corrupt the players in A, passively corrupt the players in E,
and fail-corrupt the players in F .
This paper is concerned with characterizing for which adversary structures general
secure function evaluation (SFE) and secure (reactive) multi-party computation
(MPC) is possible, in various models. This has been achieved so far only for the
very special model of perfect security, where, interestingly, the conditions for SFE
and MPC are distinct. Such a separation was first observed by Ishai et al. in the
context of computational security. We give the exact conditions for general SFE
and MPC to be possible for information-theoretic security (with negligible error
probability) and for computational security, assuming a broadcast channel, with
and without setup. In all these settings we confirm the strict separation between
SFE and MPC. As a simple consequence of our results we solve an open problem
for computationally secure MPC in a threshold model with all three corruption
types.

1 Introduction

Secure Function Evaluation and Secure Multi-Party Computation Secure function
evaluation (SFE) allows a set P = {p1, . . . , pn} of n players to compute an arbitrary
agreed function f of their inputs x1, . . . , xn in a secure way. (Reactive) secure multi-
party computation (MPC) is a generalization of SFE where the function to be computed is
“reactive”: players can give inputs and get outputs several times during the computation.
If one models SFE and MPC as ideal functionalities, then the main difference is that in
MPC (but not in SFE) the functionality must be able to keep state.

The potential dishonesty of players is modeled by a central adversary corrupting play-
ers, where players can be actively corrupted (the adversary takes full control over them),
passively corrupted (the adversary can read their internal state), or fail-corrupted (the

? This research was partially supported by the Swiss National Science Foundation (SNF),
project no. 200020-113700/1 and by the Zurich Information Security Center (ZISC).
The full version of this paper is available at http://www.crypto.ethz.ch/pubs/HiMaZi08

J. Pieprzyk (Ed.): ASIACRYPT 2008, LNCS 5350, pp. 1–18, 2008.
c© International Association for Cryptologic Research 2008

2 M. Hirt, U. Maurer, and V. Zikas

adversary can make them crash at any suitable time). A crashed player stops sending
any messages, but the adversary cannot read the internal state of the player (unless he is
actively or passively corrupted at the same time).

Summary of Known Results SFE (and MPC) was introduced by Yao [Yao82]. The
first general solutions were given by Goldreich, Micali, and Wigderson [GMW87];
these protocols are secure under some intractability assumptions. Later solu-
tions [BGW88,CCD88] provide information-theoretic security. In particular, it is remark-
able that if a (physical) broadcast channel is assumed, strictly more powerful adversaries
can be tolerated [RB89,Bea91].

In the seminal papers solving the general SFE and MPC problems, the adversary is
specified by a single corruption type (active or passive) and a threshold t on the tolerated
number of corrupted players. Goldreich, Micali, and Wigderson [GMW87] proved that,
based on cryptographic intractability assumptions, general secure MPC is possible if
and only if t < n/2 players are actively corrupted, or, alternatively, if and only if t < n
players are passively corrupted. In the information-theoretic model, Ben-Or, Goldwasser,
and Wigderson [BGW88] and independently Chaum, Crépeau, and Damgård [CCD88]
proved that unconditional security is possible if and only if t < n/3 for active corruption
and t < n/2 for passive corruption. Finally, in [GMW87,GL02,Gol04] it was shown that,
based on cryptographic intractability assumptions, any number of active cheaters (t < n)
can be tolerated for SFE, but only if we sacrifice fairness and guaranteed delivery of the
output [Cle86]. Some of the above results were unified, and extended to include fail-
corruption, in [FHM98]: perfectly secure MPC (and SFE) is achievable if and only if
3ta + 2tp + tf < n, and unconditionally secure MPC (SFE) (without a trusted setup or
a broadcast channel) is achievable if and only if 2ta + 2tp + tf < n and 3ta + tf < n,
where ta, tp, and tf denote the upper bounds on the number of actively, passively, and
fail-corrupted players, respectively. These results consider an adversary who can perform
all three corruption types simultaneously. For the computational-security case, Ishai et al.
[IKLP06] gave a protocol for SFE which tolerates an adversary who can either corrupt
ta < n/2 players actively, or, alternatively, tp < n players passively. They also showed
that such an adversary cannot be tolerated for MPC.

Generalizing threshold models, the adversary’s corruption power can be character-
ized by a so-called adversary structure which enumerates the adversary’s corruption op-
tions, each option being a triple (A,E, F) of subsets of P , where the adversary can
actively corrupt the players in A, passively corrupt the players in E, and fail-corrupt the
players in F . Of course, the adversary’s choice of the option is secret and a protocol must
tolerate any choice by the adversary.

General adversary structures were first considered in [HM97,HM00] for active-only
and passive-only corruption. General mixed-corruption (active and passive) adversary
structures were considered in [FHM99]. The full generality, including fail-corruption,
was first considered in [BFH+08], where only the perfect-security case could be solved,
both for SFE and MPC. An interesting aspect of those results is the separation between
SFE and MPC: the condition for SFE is strictly weaker than the condition for MPC. This
can also be seen as a justification for the most general mixed corruption models. Such a
separation was previously observed for the perfect-security case [Alt99] and, as already
mentioned, for the computational-security case [IKLP06].

MPC vs. SFE : Unconditional and Computational Security 3

Contributions of this Paper We prove the exact conditions for general SFE and MPC to
be possible, in the most general mixed adversary model, with synchronous communica-
tion, and where a broadcast channel is assumed. We consider the most natural and desir-
able security notion, where full security (including fairness and guaranteed output deliv-
ery) is required. We solve the two cases of general interest: unconditional (information-
theoretic with negligible error probability) security and computational security, both with
and without setup. We show a strict separation between SFE and MPC.

Our results imply that for the threshold model with all three corruption types si-
multaneously, and for computational security, SFE and MPC are possible if and only if
2ta + tp + tf < n. As in [FHM98] there is no separation in this model.

Outline of this paper In Section 2 we describe the model. In Sections 3,4,5 and 6 we
handle the unconditional-security case; in particular, in Sections 3 and 4 we describe
techniques and sub-protocols that are used for the construction of MPC and SFE pro-
tocols described in Sections 5 and 6, respectively. Finally, in Section 7 we handle the
computational-security case.

2 The Model

We consider a set P = {p1, . . . , pn} of players. Some of these players can be corrupted
by the adversary. We consider active corruption (the adversary takes full control), passive
corruption (the adversary can read the internal state), and fail-corruption (the adversary
can make the player crash). We use the following characterizations for players: a player
that is not corrupted is called uncorrupted, a player that (so far) has followed the protocol
instructions is called correct, and a player that has deviated from the protocol (e.g., has
crashed or has sent wrong messages) is called incorrect. The adversary’s corruption capa-
bility is characterized by an adversary structureZ = {(A1, E1, F1), . . ., (Am, Em, Fm)}
(for some m) which is a monotone set of triples of player sets. At the beginning of the
protocol, the adversary chooses a triple Z? = (A?, E?, F ?) ∈ Z and actively corrupts
the players in A?, passively corrupts the players in E? (eavesdropping), and fail-corrupts
the players in F ?;1 this triple is called the actual adversary class or simply the actual ad-
versary. Note that Z? is not known to the honest players and appears only in the security
analysis. A protocol is calledZ-secure if it is secure against an adversary with corruption
power characterized by Z . For notational simplicity we assume that A ⊆ E and A ⊆ F
for any (A,E, F) ∈ Z , since an actively corrupted player can behave as being passively
or fail-corrupted. Furthermore, as many constructions only need to consider the maximal
classes of a structure, we define the maximal structure Z as the smallest subset of Z such
that ∀(A,E, F) ∈ Z ∃(Ā, Ē, F̄) ∈ Z : A ⊆ Ā, E ⊆ Ē, F ⊆ F̄ .

Communication takes place over a complete network of secure channels. Further-
more, we assume authenticated broadcast channels, which allow every pi ∈ P to con-
sistently send an authenticated message to all players in P . All communication is syn-
chronous, i.e., the delays in the network are upper-bounded by a known constant.

In the computational model (Section 7), the secrecy of the bilateral channels can
be implemented by using encryption, where the public keys are distributed using the

1 We focus on static security, although our results could be generalized to adaptive corruption.

4 M. Hirt, U. Maurer, and V. Zikas

authenticated broadcast channels. We mention that in a model with simultaneous active
and passive corruption, the authenticity cannot easily be implemented using setup, as
the adversary can forge signatures of passively corrupted players. Also implementing the
authenticated broadcast channels by point-to-point communication seems non-trivial, as
it must be guaranteed that fail-corrupted players send either the right value or no value
(but not a wrong value), and that passively corrupted players always send the right value.

To simplify the description, we adopt the following convention: Whenever a player
does not receive an expected message (over a bilateral or a broadcast channel), or receives
a message outside of the expected range, then the special symbol ⊥6∈ F is taken for this
message. Note that after a player has crashed, he only sends ⊥.

The function to be computed is described as an arithmetic circuit over some finite
field F, consisting of addition (or linear) gates and multiplication gates. Our protocols
take as input the player’s inputs and additionally the maximal adversary structure. The
running time of the suggested protocols is polynomial in the size of their input,2 and the
error probability is negligible.

3 Information Checking

An actively corrupted player might send a value to another player and then deny that the
value was sent by him. To deal with such behavior, we need a mechanism which binds a
player to the messages he sends. In [RB89,CDD+99,BHR07] the Information Checking
(IC) method was developed for this purpose, and used to design unconditionally secure
protocols tolerating up to t < n/2 active cheaters. In this section, we extend the IC
method to the setting of general adversaries with active, passive, and fail-corruption.

The IC-authentication scheme involves three players, a sender ps, a recipient pr, and
a verifier pv , and consists of three protocols, called IC-Setup, IC-Distr, and IC-Reveal.
Protocol IC-Distr allows ps to send a value v to pr in an authenticated way, so that pr

can, by invoking IC-Reveal, open v to pv and prove that v was received from ps. Both
IC-Distr and IC-Reveal assume a secret key α known exclusively to ps and pv (but not
to pr). This key is generated and distributed in IC-Setup. Note that the same key can be
used to authenticate multiple messages.

Informally, the three protocols can be described as follows: In IC-Setup, ps generates
a uniformly random key α and sends it to pv over the bilaterally secure channel. In
IC-Distr, α is used to generate an authentication tag y and a verification tag z for the sent
value v. The values (v, y) and z are given to pr and pv , respectively. In IC-Reveal, pr

sends (v, y) to pv , who verifies that (y, z) is a valid authentication/verification-tag pair
for v with key α.

Ideally, an IC-authentication scheme should have the following properties: (1) Any
value sent with IC-Distr is accepted in IC-Reveal, (2) in IC-Distr, pv gets no information
on v, and (3) only values sent with IC-Distr are accepted in IC-Reveal. However, these
properties cannot be (simultaneously) perfectly satisfied. In fact, Property 3 can only be

2 As the adversary structure might be exponentially large, our protocols’ worst case running time
can be exponential in the size of the player set. However, this is the best complexity one can
hope to achieve for a protocol that tolerates any adversary structure [HM00].

MPC vs. SFE : Unconditional and Computational Security 5

achieved with negligible error probability, as the adversary might guess an authentication
tag y′ for a v′ 6= v. Moreover, it can only be achieved when neither ps nor pv is passively
corrupted, since otherwise the adversary knows α and z.

In our IC-authentication scheme the key α is chosen uniformly at random from F and
the value v is also from F. The authentication and verification tags, y and z, respectively,
are such that for some degree-one polynomial w(·) over F, w(0) = v, w(1) = y, and
w(α) = z. In other words, (y, z) is a valid IC-pair if z = (y − v)α + v. Defining
validity this way gives the IC-authentication scheme an additional linearity property. In
particular, if (y, z) and (y′, z′) are valid IC-pairs for v and v′, respectively, (for the same
α) then (y + y′, z + z′) is a valid IC-pair for v + v′. This implies that when some values
have been sent with IC-Distr, then pr and pv can, without any interaction, compute valid
authentication data for any linear combination of those values.

Due to space restrictions, the detailed description of the protocols IC-Setup, IC-Distr,
and IC-Reveal, as well as the proof of the following lemma are deleted from this extended
abstract.

Theorem 1. Our IC-authentication scheme has the following properties. Correctness:
When IC-Distr succeeds pr learns a value v′, where v′ = v unless ps is actively cor-
rupted. IC-Distr might abort only when ps is incorrect. Completeness: If IC-Distr suc-
ceeds and pr is correct then in IC-Reveal pv accepts v′. Privacy: IC-Distr leaks no in-
formation on v to any player other than pr. Unforgeability: When neither ps nor pv is
passively corrupted, and the protocols IC-Distr and IC-Reveal have been invoked at most
polynomially many times, then the probability that an adversary actively corrupting pr

makes pv accept some v′ which was not sent with IC-Distr is negligible.

General IC-signatures An IC-authentication scheme allows a sender pi ∈ P to send
a value v to a recipient pj ∈ P , so that pj can later prove authenticity of v, but only
towards a dedicated verifier pk ∈ P . In our protocols we want to use IC-authentication
as a mechanism to bind the sender pi to the messages he sends to pj , so that pj can prove
to every pk ∈ P that these messages originate from pi. In [CDD+99], the IC-signatures
where introduced for this purpose. These can be seen as semi “digital signatures” with
information theoretic security. They do not achieve all properties of digital signatures,
but enough to guarantee the security of our protocols.

The protocols used for generation and verification of IC-signatures are called
ICS-Sign and ICS-Open, respectively. ICS-Sign allows a player pi ∈ P to send a value v
to pj ∈ P signed with an IC-signature. The idea is the following: for each pk ∈ P , pi in-
vokes IC-Distr to send v to pj with pk being the verifier, where pj checks that he receives
the same v in all invocations. As syntactic sugar, we denote the resulting IC-signature by
σi,j(v). The idea in ICS-Open is the following: pj announces v and invokes IC-Reveal
once for each pk ∈ P being the verifier. Depending on the outcomes of IC-Reveal the
players decide to accept or reject v. As we want every pi ∈ P to be able to send mes-
sages with ICS-Sign, we need a secret-key setup, where every pi, pk ∈ P hold a secret
key αi,k. Such a setup can be easily established by appropriate invocations of IC-Setup.

The decision to accept or reject in ICS-Open has to be taken in a way which ensures
that valid signatures are accepted (completeness), and forged signatures are rejected with

6 M. Hirt, U. Maurer, and V. Zikas

overwhelming probability (unforgeability). To guarantee completeness, a signature must
not be rejected when only actively corrupted players rejected in IC-Reveal. Hence, the
players cannot reject the signature when there exists a class (Aj , Ej , Fj) ∈ Z such that
all rejecting players are in Aj . Along the same lines, to guarantee unforgeability, the play-
ers cannot accept the signature when there exists a class (Ai, Ei, Fi) ∈ Z such that all
accepting players are in Ei. To make sure that the above two cases cannot simultaneously
occur, we require Z to satisfy the following property, denoted as CIC(P,Z):

CIC(P,Z) ⇐⇒ ∀(Ai, Ei, Fi), (Aj , Ej , Fj) ∈ Z : Ei ∪Aj ∪ (Fi ∩ Fj) 6= P

We refer to the full version of this paper for a detailed description of the protocols
ICS-Sign and ICS-Open and for a proof of the following lemma.

Lemma 1. Assuming that CIC(P,Z) holds, our IC-signatures scheme has the follow-
ing properties. Correctness: When ICS-Sign succeeds, then pr learns a value v′, where
v′ = v unless ps is actively corrupted. ICS-Sign might abort only when ps is incorrect.
Completeness: If ICS-Sign succeeds and pr is correct then in ICS-Open all players accept
v′. Privacy: ICS-Sign leaks no information on v to any player other than pr. Unforge-
ability: When ps is not passively corrupted, and the protocols ICS-Sign and ICS-Open
have been invoked at most polynomially many times, then the probability that an adver-
sary actively corrupting pj can make the players accept some v′ which was not sent with
ICS-Sign is negligible.

Linearity of IC-signatures The linearity property of the IC-authentication scheme is
propagated to the IC-signatures. In particular, when some values have be sent by pi to
pj with ICS-Sign (using the same secret keys), then the players can locally, i.e., without
any interaction, compute pi’s signature for any linear combination of those values, by
applying the appropriate linear combination on the respective signatures. This process
yields a signature which, when pj is correct, will be accepted in ICS-Open.

4 Tools - Subprotocols

In this section we describe sub-protocols that are used as building blocks for MPC and
SFE protocols. Some of the sub-protocols are non-robust, i.e., they might abort. When
they abort then all (correct) players agree on a non-empty set B ⊆ P of incorrect play-
ers. The sub-protocols use IC-signatures to authenticate the sent values, therefore their
security relies on the security of the IC-signatures. In particular, the security of the sub-
protocols is guaranteed only when no signature is forged.3 The secret-key setup, which
is required for the IC-signatures, is established in a setup phase, before any of the sub-
protocols is invoked. Due to space restrictions the security proofs and even the detailed
descriptions of some of the sub-protocols are deleted from this extended abstract.

4.1 Share and Reconstruct

A secret-sharing scheme allows a player (called the dealer) to distribute a secret so that
only qualified sets of players can reconstruct it. As secret-sharing scheme we employ

3 We use the term “forge” only for signatures corresponding to non-passively corrupted signers.

MPC vs. SFE : Unconditional and Computational Security 7

a sum-sharing, i.e., the secret is split into summands that add up to the secret, where
each summand might be given to several players. Additionally, for each summand all
the players who hold it bilaterally exchange signatures on it. The sharing is character-
ized by a vector S = (S1, . . . , Sm) of subsets of P , called the sharing specification.
A value s is shared according to S if there exist summands s1, . . . , sm ∈ F such that∑m

k=1 sk = s, and for each k = 1, . . . ,m every pj ∈ Sk holds sk along with IC-
signatures on it from every pi ∈ Sk. As syntactic sugar, we denote by σS(s) the set of
all IC-signatures on the summands s1, . . . , sm held by the players. For each pj ∈ P the
vector 〈s〉j = (sj1 , . . . , sj`

) is considered to be pj’s share of s, where sj1 , . . . , sj`
are

the summands held by pj . The vector of all shares and the attached signatures, denoted
as 〈s〉 =

(
〈s〉1, . . . , 〈s〉n, σS(s)

)
, is a sharing of s. The vector of summands in 〈s〉 is

denoted as [s] = (s1, . . . , sm). We say that 〈s〉 is a consistent sharing of s according to S
if for each k = 1, . . . ,m all (correct) players in Sk have the same view on the summands
sk and hold signatures on it from all other players in Sk, and

∑m
k=1 sk = s.

For an adversary structure Z , we say that a sharing specification S is Z-private
if for any sharing 〈s〉 according to S and for any adversary in Z , there exists a sum-
mand sk which this adversary does not know. Formally, S is Z-private if ∀(A,E, F) ∈
Z ∃S ∈ S : S ∩ E = ∅.4 For an adversary structure Z with maximal classes
Z =

{
(·, E1, ·), . . . , (·, Em, ·)

}
, we denote the natural Z-private sharing specification

by SZ =
(
P\E1, . . . ,P\Em

)
.

Protocol Share (see below) allows a dealer p to share a value s among the players
in P according to a sharing specification S. The protocol is non-robust and might abort
with a set B ⊆ P of incorrect players.

Protocol Share(P, Z, S, p, s)
1. Dealer p chooses summands s2, . . . , s|S| randomly and sets s1 := s−

∑|S|
k=2 sk.

2. For k = 1, . . . , |S| the following steps are executed:
(a) p sends sk to each pj ∈ Sk.
(b) For each pi, pj ∈ Sk : ICS-Sign(P,Z, pi, pj , sk) is invoked to have pi send

sk to pj and attach an IC-signature on it. If ICS-Sign aborts, then Share aborts
with B := {pi}.

(c) Each pj ∈ Sk broadcasts a complaint bit b, where b = 1 if pj received a ⊥
instead of sk in Step 2a, or if he received some s′k 6= sk from some pi in
Step 2b, and b = 0 otherwise.

(d) If a complaint was reported p broadcasts sk and the players in Sk create default
signatures on it. If p broadcasts ⊥ then Share aborts with set B := {p}.

Lemma 2. If S is a Z-private sharing specification, then protocol Share(P,Z,S, p, s)
has the following properties. Correctness: It either outputs a consistent sharing of s′

according to S, where s′ = s unless the dealer p is actively corrupted, or it aborts with

4 Recall that for all (A, E, F) ∈ Z : A ⊆ E.

8 M. Hirt, U. Maurer, and V. Zikas

a non-empty set B ⊆ P of incorrect players. Privacy: No information about s leaks to
the adversary.

Reconstructing a shared value s is straightforward: The summands are announced
one by one, and s is computed as the sum of the announced summands. To announce a
summand sk, each pi ∈ Sk broadcasts sk and opens all the signatures on sk which he
holds (i.e., the signatures on sk from all players in Sk). If all the signatures announced by
pi are accepted, then the value he announced is taken for sk. If no pi ∈ Sk correctly an-
nounces all the signatures the announcing aborts with B := Sk. Protocols PubAnnounce
and PubReconstruct invoked to publicly announce a summand and to publicly recon-
struct a shared value are given in details in the full version of this paper. In the following
two lemmas (also proved in the full version) we state their security.

Lemma 3. Assume that CIC(P,Z) holds, the condition ∀(A,E, F) ∈ Z : Sk 6⊆ E
holds, and no signature is forged. Then protocol PubAnnounce either publicly announces
the correct summand sk, or it aborts with a non-empty set B of incorrect players. It might
abort only if Sk ⊆ F ?.

Lemma 4. Assume that CIC(P,Z) holds, the condition ∀S ∈ S,
∀(A,E, F) ∈ Z : S 6⊆ E holds, 〈s〉 is a consistent sharing according to S, and
no signature is forged. Then protocol PubReconstruct either publicly reconstructs s, or
it aborts with a non-empty set B ⊆ P of incorrect players.

Protocol PubReconstruct allows for public reconstruction of a shared value. How-
ever, in some of our protocols we need to reconstruct a shared value s privately, i.e.,
only towards some dedicated output player p. Such a private reconstruction protocol can
be built using standard techniques (p shares a one-time pad used for perfectly blinding
the output). We refer to the protocol for private reconstruction as Reconstruct, and point
to the full version of this paper for a detailed description as well as for a proof of the
following lemma.

Lemma 5. Assume that CIC(P,Z) holds, S is a Z-private sharing specification, the
condition ∀S ∈ S, ∀(·, E, ·) ∈ Z : S 6⊆ E holds, 〈s〉 is a consistent sharing according
to S, and no signature is forged. Then protocol Reconstruct(P,Z,S, p, 〈s〉) has the
following properties. Correctness: Either it reconstructs s towards p, or it aborts with a
non-empty set B ⊆ P of incorrect players. Privacy: No information about 〈s〉 leaks to
the adversary.

Addition Due to the linearity of our secret sharing scheme, the players can locally com-
pute a sharing of the sum of two shared values s and t as follows: each player adds his
shares of s and t, and the corresponding signatures are also (locally) added. We refer to
this sub-protocol as Add.

4.2 Multiplication

The goal of this section is to design a protocol for securely computing a shar-
ing of the product of two shared values. Our approach combines techniques from
[GRR98,Mau02,Mau06,BFH+08].

MPC vs. SFE : Unconditional and Computational Security 9

At a high level, the multiplication protocol for two shared values s and t works as fol-
lows: As s and t are already shared, we can use the summands s1, . . . , sm and t1, . . . , tm
to compute the product as st =

∑m
k,`=1 skt`. For each term xk,` = skt`, we have a player

p(k,`) ∈ (Sk ∩ S`) share xk,` and prove that he shared the correct value. The sharing of
st is computed as the sum of the sharings of the terms xk,`.

For p(k,`) ∈ (Sk ∩ S`) to share skt` and prove that he did so properly the idea
is the following: First, p(k,`) shares skt` by invoking Share. Denote by x′k,` the shared
value.5 Next, p(k,`) shares the summands sk and t` by a protocol, called SumShare, which
guarantees that he shares the correct summands. Finally, p(k,`) uses the sharings of sk,
t`, and x′k,` in a protocol, called MultProof, which allows him to prove that x′k,` = skt`.
In the following we discuss the sub-protocols SumShare and MultProof, and then give a
detailed description of the multiplication protocol.

Protocol SumShare (see full version) allows a player p ∈ Sk to share a summand sk

of a sharing 〈s〉 according to S, where Sk ∈ S. The sharing specification of the output
sharing can be some S ′ 6= S. In contrast to Share, protocol SumShare guarantees that pi

shares the correct value sk. The idea is to have p share sk, by Share, and then reconstruct
the sharing (privately) towards each pj ∈ Sk who publicly approves or disapproves it.
We refer to the full version of this paper for a proof of the following lemma.

Lemma 6. Assume that CIC(P,Z) holds, S ′ is a Z-private sharing specification, the
conditions ∀(·, E, ·) ∈ Z : Sk 6⊆ E and ∀S′ ∈ S ′ ∀(·, E, ·) ∈ Z : S′ 6⊆ E hold, and
no signature is forged. Then SumShare(P,Z,S ′, Sk, p, sk) has the following properties.
Correctness: Either it outputs a consistent sharing of sk (p also outputs the vector [sk]
of summands) according to S ′, or it aborts with a non-empty set B ⊆ P of incorrect
players. Privacy: No information about sk leaks to the adversary.

Protocol MultProof (see full version) allows a player p, called the prover, who has
shared three values a, b, and c (and knows the corresponding vectors [a], [b], and [c] of
summands) to prove that c = ab. The protocol can be seen as a distributed challenge-
response protocol with prover p and verifier being all the players in P . On a high level,
it can be described as follows: First p shares some appropriately chosen values. Then the
players jointly generate a uniformly random challenge r and expose it, and p answers
the challenge. If p’s answer is consistent with the sharings of a, b, and c and the sharings
which he created in the first step, then the proof is accepted otherwise it is rejected.
MultProof is non-robust and might abort with a set B ⊆ P of incorrect players. The
proof of the following lemma is deleted from this extended abstract.

Lemma 7. Assume that CIC(P,Z) holds, S is a Z-private sharing specification, the
condition ∀S ∈ S, ∀(·, E, ·) ∈ Z : S 6⊆ E holds, 〈a〉, 〈b〉, and 〈c〉 are consistent
sharings according to S, and no signature is forged. Then the protocol MultProof has
the following properties. Correctness: If c = ab, then either the proof is accepted or
MultProof aborts with a non-empty set B ⊆ P of incorrect players. Otherwise (i.e, if
c 6= ab), with overwhelming probability, either the proof is rejected or MultProof aborts
with a non-empty set B ⊆ P of incorrect players. Privacy: No information about 〈a〉, 〈b〉,
and 〈c〉 leaks to the adversary.

5 Note that Share does not guarantee that x′
k,` = skt`.

10 M. Hirt, U. Maurer, and V. Zikas

For completeness, we describe the multiplication protocol Mult (see next page),
which allows to compute a sharing of the product of two shared values. Mult is non-
robust and might abort with a non-empty set B ⊆ P of incorrect players. When it suc-
ceeds, then with overwhelming probability it outputs a consistent sharing of the product.

Protocol Mult(P, Z, S, 〈s〉, 〈t〉)
1. For every (Sk, S`) ∈ S × S, the following steps are executed, where p(k,`) denotes

the player in Sk ∩ S` with the smallest index:
(a) p(k,`) computes xk,` := skt` and shares it, by Share. Denote by 〈xk,`〉 the

resulting sharing.a

(b) SumShare(P,Z,S, Sk, p(k,`), sk) and SumShare(P,Z,S, S`, p
(k,`), t`) are

invoked. Denote by 〈sk〉 and 〈t`〉 the resulting sharings.
(c) MultProof(P,Z,S, p(k,`), 〈sk〉, 〈t`〉, 〈xk,`〉) is invoked. If the proof is rejected

then Mult aborts with set B = {p(k,`)}.
2. A sharing of the product st is computed as the sum of the sharings 〈xk,`〉 by repeat-

edly invoking Add.
3. If any of the invoked sub-protocols aborts with B, then also Mult aborts with B.

a In addition to his share of 〈xk,`〉, p(k,`) also outputs the vector of summands [xk,`].

Lemma 8. Assume that CIC(P,Z) holds, S is a Z-private sharing specification, the
conditions ∀S ∈ S,∀(·, E, ·) ∈ Z : S 6⊆ E and ∀Sk, S` ∈ S : Sk ∩ S` 6= ∅ hold, 〈s〉
and 〈t〉 are consistent sharings according to S, and no signature is forged. Then protocol
Mult(P,Z,S, 〈s〉, 〈t〉) has the following properties except with negligible probability.
Correctness: It either outputs a consistent sharing of st according to S or it aborts with
a non-empty set B ⊆ P of incorrect players. Privacy: No information about 〈s〉 and 〈t〉
leaks to the adversary.

4.3 Resharing

In the context of MPC, we will need to reshare shared values according to a different
sharing specification. To do that, each summand is shared by SumShare (see Section 4.2)
according to the new sharing specification, and the players distributively add the sharings
of the summands, resulting in a new sharing of the original value. A detailed description
of the protocol Reshare as well as a proof of the following lemma can be found in the
full version of this paper.

Lemma 9. Assume that CIC(P,Z) holds, S ′ is a Z-private sharing specification, the
conditions ∀S ∈ S∀(·, E, ·) ∈ Z : S 6⊆ E, and ∀S′ ∈ S ′∀(·, E, ·) ∈ Z : S′ 6⊆ E hold,
and no signature is forged. Then Reshare(P,Z,S,S ′, 〈s〉) has the following properties.
Correctness: Either it outputs a consistent sharing of s according to S ′, or it aborts with
a non-empty set B ⊆ P of incorrect players. Privacy: No information about 〈s〉 leaks to
the adversary.

MPC vs. SFE : Unconditional and Computational Security 11

5 (Reactive) Multi-Party Computation

In this section we prove the necessary and sufficient condition on the adversary structure
Z for the existence of unconditionally (i.e., i.t. with negligible error probability)Z-secure
multi-party computation protocols, namely, we prove the following theorem:

Theorem 2. A set P of players can unconditionally Z-securely compute any (reactive)
computation, if and only if C(2)(P,Z) and C(1)(P,Z) hold, where

C(2)(P,Z) ⇐⇒ ∀(Ai, Ei, Fi), (Aj , Ej , Fj) : Ei ∪ Ej ∪ (Fi ∩ Fj) 6= P
C(1)(P,Z) ⇐⇒ ∀(Ai, Ei, Fi), (Aj , Ej , Fj) : Ei ∪ Fj 6= P

The sufficiency of the above condition is proved by constructing an MPC protocol
for any given circuit C consisting of input, addition, multiplication, and output gates.6

The reactiveness of the computation is modeled by assigning to each gate a point in time
when it should be evaluated.

The circuit is evaluated in a gate-by-gate fashion, where for input, addition, mul-
tiplication, and output gates, the corresponding sub-protocol Share, Add, Mult, and
Reconstruct, respectively, is invoked.

The computation starts off with the initial player set P and adversary structureZ , and
with the sharing specification being S := SZ . Each time a sub-protocol aborts with set B
of incorrect players, the players in B are deleted from the player set and from every set in
the sharing specification, and the corresponding gate is repeated. Any future invocation
of a sub-protocol is done in the updated player set P ′ and sharing specification S ′, and
with the updated adversary structureZ ′, which contains only the classes in Z compatible
with the players in P\P ′ being incorrect. Note that, as the players in P\P ′ are incorrect,
any sharing according to (P,S) can be transformed, without any interaction, to a sharing
according to (P ′,S ′) by having the players delete all signatures of signers from P \ P ′.

The delicate task is the multiplication of two shared values s and t. The idea is the
following: First, we invoke Reshare to have both s and t shared according to the sharing
specification SZ′ , i.e., the specification associated with the structure Z ′. Then we invoke
Mult to compute a sharing of the product st according to SZ′ , and at the end we invoke
Reshare once again to have the product shared back to the initial setting (i.e, according
to (P ′,S ′)).

The security of the computation is guaranteed as long as no signature is forged. We
argue that the forging probability is negligible. Observe that the total number of sig-
natures in each sub-protocol invocation is polynomial in the input size; also, the total
number of sub-protocol invocations is polynomial in the size of the circuit (since each
time a sub-protocol aborts a new set B of incorrect players is identified, the total number
of abortions is bounded by n). Hence, the total number of signatures in the computation is
polynomial and, by the unforgeability property, the probability that a signature is forged
is negligible.

We use the following operators on adversary structures, which were introduced in
[BFH+08]: For a set B ⊆ P , we denote by Z|B⊆F the sub-structure of Z that contains

6 This does not exclude probabilistic circuits, as a random gate can be simulated by having each
player input a random value and take the sum of those values as the input.

12 M. Hirt, U. Maurer, and V. Zikas

only adversaries who can fail-corrupt all the players in B, i.e., Z|B⊆F = {(A,E, F) ∈
Z : B ⊆ F}. Furthermore, for a set P ′ ⊆ P , we denote by Z|P′ the adversary structure
with all classes inZ restricted to the player setP ′, i.e.,Z|P′ = {(A∩P ′, E∩P ′, F∩P ′) :
(A,E, F) ∈ Z}. We also use the same operator on sharing specifications with similar
semantics, i.e., for S = (S1, . . . , Sm) we denote S|P′ = (S1 ∩ P ′, . . . , Sm ∩ P ′). As
syntactic sugar, we write Z|B⊆F

P′ for (Z|B⊆F) |P′ .
It follows from the above definitions that when the players in P \ P ′ have been

detected to be incorrect, then the actual adversary Z? is inZ|P\P′⊆F . Furthermore, as the
updated player set is P ′, the corresponding sharing specification and adversary structure
are S ′ = S|P′ andZ ′ = Z|P\P′⊆F

P′ , respectively. One can easily verify that the conditions
C(2) and C(1) hold in (P ′,Z ′) when they hold in (P,Z). This results in protocol MPC
(see below).

Protocol MPC(P, Z, C)
0. Initialize P ′ := P , Z ′ := Z , and S ′ := SZ .
1. For every gate to be evaluated, do the following:

– Input gate for p: If p ∈ P ′ invoke Share to have p share his input according to
(P ′,S ′). Otherwise, a default sharing of some pre-agreed default value is taken
as the sharing of p’s input.

– Addition gate: Invoke Add to compute a sharing of the sum according to S ′.
– Multiplication gate: Denote the sharings of the factors as 〈s〉 and 〈t〉, re-

spectively, and the sharing specification corresponding to Z ′ as SZ′ . In-
voke Reshare(P ′,Z ′,S ′,SZ′ , 〈s〉) and Reshare(P ′,Z ′,S ′,SZ′ , 〈t〉) to ob-
tain the sharings 〈s〉′ and 〈t〉′ according to (P ′,SZ′), respectively. Invoke
Mult(P ′,Z ′,SZ′ , 〈s〉′, 〈t〉′) to obtain a sharing 〈st〉′ of the product, accord-
ing to (P ′,SZ′). Invoke Reshare(P ′,Z ′,SZ′ ,S ′, 〈st〉′) to reshare this product
according to (P ′,S ′).

– Output gate for p: If p ∈ P ′ invoke Reconstruct to have the output recon-
structed towards p.

2. If any of the sub-protocols aborts with set B, then update P ′ := P ′ \ B, set S ′ :=
S ′|P′ and Z ′ := Z|P\P′⊆F

P′ and repeat the corresponding gate.

Lemma 10. The protocol MPC is unconditionally Z-secure if C(2)(P,Z) and
C(1)(P,Z) hold.

To complete this section, we give two lemmas that imply that unconditionally se-
cure (reactive) MPC is not possible for some circuits when C(2)(P,Z) or C(1)(P,Z) is
violated. The proofs of the lemmas are deleted from this extended abstract.

Lemma 11. If C(2)(P,Z) is violated then there exist (even non-reactive) circuits which
cannot be evaluated unconditionally Z-securely.

Lemma 12. If C(1)(P,Z) is violated, then the players cannot hold a secret joint state
with unconditional security.

MPC vs. SFE : Unconditional and Computational Security 13

6 Secure Function Evaluation

In this section we prove the necessary and sufficient condition on the adversary structure
Z for the existence of unconditionally Z-secure function evaluation protocols. Note that
the condition for SFE is weaker than the condition for MPC.

Theorem 3. A set P of players can unconditionally Z-securely compute any function if
and only if C(2)(P,Z) and C(1)

ORD(P,Z) hold, where

C(2)(P,Z) ⇐⇒ ∀(Ai, Ei, Fi), (Aj , Ej , Fj) ∈ Z : Ei ∪ Ej ∪ (Fi ∩ Fj) 6= P

C(1)
ORD(P,Z) ⇐⇒

{
∃ an ordering

(
(A1, E1, F1), . . . , (Am, Em, Fm)) of Z s.t.7

∀i, j ∈ {1, . . . ,m}, i ≤ j : Ej ∪ Fi 6= P

The sufficiency of the condition is proved by constructing an SFE protocol. Our approach
is similar to the approach from [BFH+08]: First all players share their inputs, then the
circuit is evaluated gate-by-gate, and then the output is publicly reconstructed. However,
our conditions do not guarantee robust reconstructibility. In fact, the adversary can break
down the computation and cause all the sharings to be lost. As the circuit is non-reactive,
we handle such an abortion by repeating the whole protocol, including the input gates. In
each repetition, the adversary might choose new inputs for the actively corrupted players.
By ensuring that the adversary gets no information on any secrets unless the full protocol
succeeds (including the evaluation of output gates), we make sure that she chooses these
inputs independently of the other players’ inputs.

Termination is guaranteed, by the fact that whenever the protocol aborts, a new set
B of incorrect players is identified, and the next iteration proceeds without them. Hence,
the number of iterations is bounded by n. This implies also that the total number of
signatures in the computation is polynomial, hence the forging probability is negligible.

Special care needs to be taken in the design of the output protocol. For simplicity,
we describe the protocol for a single public output. Using standard techniques one can
extend it to allow several outputs and, furthermore, private outputs.

The idea of the output protocol is the following: First observe that the privacy of our
sharing scheme is protected by a particular summand which is not given to the adversary.
In fact, such a summand sk is guaranteed to exist for each (Ak, Ek, Fk) ∈ Z by the
Z-privacy of the sharing specification SZ . As long as this summand is not published, an
adversary of class (Ak, Ek, Fk) gets no information about the output (from the adver-
sary’s point of view, sk is a perfect blinding of the output, and all other summands si are
either known to the adversary or are distributed uniformly). Second, observe that when-
ever the publishing of some summand sk fails (i.e., PubAnnounce aborts), the players get
information about the actual adversary (A?, E?, F ?), namely that Sk ⊆ F ?. The trick
is to announce the summands in such an order, that if the announcing of a summand sk

aborts, then from the information that Sk ⊆ F ? the players can deduce that the summand
associated with the actual adversary class has not been yet announced. In particular, if
an adversary class Zi = (Ai, Ei, Fi) could potentially abort the announcing of the sum-
mand sk (i.e., if Sk ⊆ Fi), then the summand sk should be announced strictly before si,
i.e., the summand associated with Zi, is announced.

7 Remember that Z denotes the maximum classes in Z . One can verify that such an ordering
exists for Z exactly if it exists for Z .

14 M. Hirt, U. Maurer, and V. Zikas

Let ((A1, E1, F1), . . . , (Am, Em, Fm)) denote an ordering of the maximal
structure Z satisfying: ∀1 ≤ i ≤ j ≤ m : Ej ∪ Fi 6= P , and let S denote the in-
duced sharing specification S = (S1, . . . , Sm) with Sk = P \ Ek. Then the protocol
OutputGeneration (see next page) either publicly reconstructs a sharing 〈s〉 according
to S or it aborts with a non-empty set B ⊆ P of incorrect players. Privacy is guaranteed
under the assumption that the summands of 〈s〉 not known to the adversary are uniformly
distributed. As long as no signature is forged, this holds for all sharings in our protocols.

Protocol OutputGeneration(P, Z, S = (S1, . . . , Sm), 〈s〉)
1. For k = 1, . . . ,m, the following steps are executed sequentially:

(a) PubAnnounce(P,Z, Sk, sk, σSk
(sk)) is invoked to have the summand sk pub-

lished.
(b) If PubAnnounce aborts with B, then OutputGeneration immediately aborts

with B.
2. Every pj ∈ P (locally) computes s :=

∑m
k=1 sk and outputs s.

Lemma 13. Assume that CIC(P,Z) holds, S is a Z-private sharing specification con-
structed as explained, the condition ∀Sk ∈ S, (·, E, ·) ∈ Z : Sk 6⊆ E holds, 〈s〉
is a consistent sharing according to S with the property that those summands that are
unknown to the adversary are randomly chosen, and no signature is forged. Then the
protocol OutputGeneration either publicly reconstructs s, or it aborts with a non-empty
set B ⊆ P of incorrect players. If OutputGeneration aborts, then the protocol does not
leak any information on s to the adversary.

For completeness, we also include a detailed description of the SFE protocol (see be-
low) and state its security in the following lemma.

Protocol SFE(P, Z, C)
0. Let S = (P \ E1, . . . ,P \ Em) for the assumed ordering(

(A1, E1, F1), . . . , (Am, Em, Fm)
)

of Z .
1. Input stage: For every input gate in C, Share is invoked to have the input player pi

share his input xi according to S.a

2. Computation stage: The gates in C are evaluated as follows:
– Addition gate: Invoke Add to compute a sharing of the sum according to S.
– Multiplication gate: Invoke Mult to compute a sharing of the product according

to S.
3. Output stage: Invoke OutputGeneration(P,Z,S, 〈s〉) for the sharing 〈s〉 of the

public output.
4. If any of the sub-protocols aborts with B, then set P := P \ B, and set Z to the

adversary structure which is compatible with B being incorrect, i.e., Z := Z|B⊆F
P ,

and go to Step 1.

a If in a later iteration a player pi /∈ P should give input, then the players in P pick the default
sharing of a default value.

MPC vs. SFE : Unconditional and Computational Security 15

Lemma 14. The protocol SFE is unconditionally Z-secure if C(2)(P,Z) and
C(1)

ORD(P,Z) hold.

To complete the proof of Theorem 3 we need to show that unconditionally Z-secure
SFE is not possible for some circuits when C(2)(P,Z) or C(1)

ORD(P,Z) is violated. The ne-
cessity of C(2)(P,Z) follows immediately from Lemma 11. The following lemma states
the necessity of C(1)

ORD(P,Z). The idea of the proof is that when C(1)
ORD(P,Z) is violated

then in any protocol evaluating the identity function, the adversary can break down the
computation at a point where she has gained noticeable (i.e., not negligible) information
about the output, although the correct players have only negligible information. For a
more detailed proof the reader is referred to the full version of this paper.

Lemma 15. If C(1)
ORD(P,Z) is violated, then there are functions that cannot be uncondi-

tionally Z-securely evaluated.

7 Computational Security

In this section we show that conditions C(1)(P,Z) and C(1)
ORD(P,Z) from Theorems 2

and 3 are sufficient and necessary for the existence of computationally Z-secure MPC
and SFE, respectively.

Theorem 4. Assuming that enhanced trapdoor permutations exist, a set P of players
can computationally Z-securely compute any (reactive) computation (MPC) if and only
if C(1)(P,Z) holds, and any non-reactive function (SFE) if and only if C(1)

ORD(P,Z) holds.

The proof of necessity is very similar to the proofs of Lemmas 12 and 15 and, there-
fore, it is omitted. The sufficiency is proved by describing protocols that realize the corre-
sponding primitive. Our approach is different than the one used in the previous sections.
In particular, first, we design a protocol for SFE and then use it to design a protocol for
MPC.

Note that the above bounds directly imply corresponding bounds for a threshold ad-
versary who actively corrupts ta players, passively corrupts tp players, and fail-corrupts
tf players, simultaneously. Using the notation from [FHM98], we say that a protocol is
(ta, tp, tf)-secure if it tolerates such a threshold adversary.

Corollary 1. Assuming that enhanced trapdoor permutations exist, a set P of players
can computationally (ta, tp, tf)-securely compute any computation (reactive or not) if
and only if 2ta + tp + tf < |P|.

7.1 The SFE Protocol

Our approach to SFE uses ideas from [IKLP06]. The evaluation of the given circuit C
proceeds in two stages, called the computation stage and the output stage. In the computa-
tion stage a uniformly random sharing of the output of C on inputs provided by the play-
ers is computed.8 For this purpose we use the (non-robust) SFE protocol from [Gol04]

8 Without loss of generality (as in Section 6) we assume that the circuit C to be computed has one
public output.

16 M. Hirt, U. Maurer, and V. Zikas

for dishonest majority which achieves partial fairness and unanimous abort [GL02]. In
the output stage the sharing of the output is publicly reconstructed, along the lines of
the reconstruction protocol from Section 6. Both stages are non-robust and they might
abort with a non-empty set B ⊆ P of incorrect players, but without violating privacy
of the inputs. When this happens the whole evaluation is repeated among the players in
P \ B, where the inputs of the players in B are fixed to a default pre-agreed value, and
the adversary structure Z is reduced to the structure Z|B⊆F

P\B , i.e., the structure which is
compatible with the players in B being incorrect.

The secret-sharing scheme used here is similar to the one we use in the unconditional-
security case. More precisely, the secret is split into uniformly random summands
s1, . . . , sm ∈ F that add up to the secret, where each player might hold several of those
summands, according to some sharing specification S = (S1, . . . , Sm). The difference
is that the players do not hold signatures on their summands, but they are committed to
them (towards all players) by a perfectly hiding commitment scheme.9 In particular, for
each summand sk, all players hold a commitment to sk such that each pi ∈ Sk holds the
corresponding decommitment information to open it.

The computation stage In the computation stage, instead of C we evaluate the circuit C ′

which computes a uniformly random sharing 〈y〉 of the output y of C according to SZ ,
i.e., the sharing specification associated with Z . The circuit C ′ can be easily constructed
from C [IKLP06]. To evaluate C ′ the players invoke the protocol for SFE from [Gol04]
for the model where authenticated broadcast channels (but no bilateral point-to-point
channels) are given, which tolerates any number of t < n actively corrupted players.
As proved in [Gol04], with this protocol we achieve the following properties: There is
a p ∈ P (specified by the protocol), such that when p is uncorrupted the circuit C ′ is
securely evaluated, otherwise the adversary can decide either to make all players abort
the protocol or to allow C ′ to be securely evaluated. Note that the adversary can decide
whether or not the protocol aborts even after having received the outputs of the passively
corrupted players. Furthermore, by inspecting the protocol in [Gol04], one can verify
that it actually satisfies some additional properties, which are relevant when all three
corruption types are considered, namely (1) if p is correct then the protocol does not
abort,10 (2) a correct player always gives his (correct) input to the evaluation of C ′, and
(3) a non-actively corrupted player does not give a wrong input (but might give no input
if he crashes). By the above properties it is clear that the protocol can abort only if p is
incorrect (i.e., B = {p}). Moreover, when it aborts privacy of the inputs is not violated
as the outputs of passively corrupted players are their shares of 〈y〉 plus perfectly hiding
commitments to all the summands of 〈y〉.

The output stage The output stage is similar to the output stage of protocol SFE de-
scribed in Section 6. The summands of 〈y〉 are announced sequentially in the order im-
plied by C(1)

ORD(P,Z). This guarantees (as in protocol OutputGeneration) that when the
announcing of a summand aborts, then the output stage can abort without violating pri-
vacy (the summand of 〈y〉 associated with the actual adversary has not been announced

9 Such commitment schemes are known to exist if (enhanced) trapdoor permutations ex-
ist [GMW86].

10 Note that a correct player is not necessary uncorrupted.

MPC vs. SFE : Unconditional and Computational Security 17

yet). To announce a summand, protocol CompPubAnnounce is invoked which is a triv-
ially modified version of PubAnnounce to use openings of commitments instead of sig-
natures. We refer to the abovely described SFE protocol as CompSFE.

Lemma 16. Assuming that enhanced trapdoor permutations exist, the protocol
CompSFE is computationally Z-secure if C(1)

ORD(P,Z) holds.

7.2 The MPC Protocol

A protocol for MPC can be built based on a (robust) general SFE protocol and a ro-
bustly reconstructible secret-sharing scheme, in a straightforward way: the SFE protocol
is used to securely evaluate the circuit gate-by-gate, where each intermediary result is
shared among the players. In fact, the secret-sharing scheme described is Section 7.1, for
sharing specification SZ , is robustly reconstructible if C(1)(P,Z) holds. Indeed, condi-
tion C(1)(P,Z) ensures that for any shared value each summand is known to at least
one player who is not actively or fail-corrupted and will not change or delete it. Hence,
the shared value is uniquely determined by the views of the players. Therefore, we can
use protocol CompSFE to evaluate any (reactive) circuit as follows: For each input gate,
invoke CompSFE to evaluate the circuit Cinput which computes a sharing (according to
SZ) of the input value. For the addition and multiplication gate, invoke CompSFE to
evaluate the circuits Cadd and Cmult which on input the sharings of two values s and t
output a sharing of the sum s + t and of the product st, respectively. For output gates,
invoke CompSFE to evaluate the circuit Coutput which on input the sharing of some value
s outputs s towards the corresponding player. We refer to the resulting MPC protocol as
CompMPC.

Lemma 17. Protocol CompMPC is computationally Z-secure if C(1)(P,Z) holds.

8 Conclusions

We considered MPC and SFE in the presence of a general adversary who can actively,
passively, and fail corrupt players, simultaneously. For both primitives we gave exact
characterizations of the tolerable adversary structures for achieving unconditional (aka
statistical) and computational security, when a broadcast channel is given. As in the case
of threshold adversaries, the achieved bounds are strictly better than those required for
perfect security, where no error probability is allowed. Our results confirm that in all
three security models (perfect, unconditional, and computational) there are adversary
structures that can be tolerated for SFE but not for MPC.

References

[Alt99] B. Altmann. Constructions for efficient multi-party protocols secure against general
adversaries.Diploma Thesis, ETH Zurich, 1999.

[Bea91] D. Beaver. Secure multiparty protocols and zero-knowledge proof systems tolerating
a faulty minority. Journal of Cryptology, 4(2):370–381, 1991.

18 M. Hirt, U. Maurer, and V. Zikas

[BFH+08] Z. Beerliová-Trubı́niová, M. Fitzi, M. Hirt, U. Maurer, and V. Zikas. MPC vs. SFE:
Perfect security in a unified corruption model. In TCC 2008, LNCS 4948, pp. 231–250,
2008.

[BGW88] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In STOC ’88, pp. 1–10, 1988.

[BHR07] Z. Beerliová-Trubı́niová, M. Hirt, and M. Riser. Efficient Byzantine agreement with
faulty minority. In ASIACRYPT 2007, LNCS 4833, pp. 393–409, 2007.

[CCD88] D. Chaum, C. Crépeau, and I. Damgård. Multiparty unconditionally secure protocols
(extended abstract). In STOC ’88, pp. 11–19, 1988.

[CDD+99] R. Cramer, I. Damgård, S. Dziembowski, M. Hirt, and T. Rabin. Efficient multiparty
computations secure against an adaptive adversary. In EUROCRYPT ’99, LNCS 1592,
pp. 311–326, 1999.

[Cle86] R. Cleve. Limits on the security of coin flips when half the processors are faulty
(extended abstract). In STOC ’86, pp. 364–369, 1986.

[FHM98] M. Fitzi, M. Hirt, and U. Maurer. Trading correctness for privacy in unconditional
multi-party computation. In CRYPTO ’98, LNCS 1462, pp. 121–136, 1998. Corrected
version is available online.

[FHM99] M. Fitzi, M. Hirt, and U. Maurer. General adversaries in unconditional multi-party
computation. In ASIACRYPT ’99, LNCS 1716, pp. 232–246, 1999.

[GL02] S. Goldwasser and Y. Lindell. Secure computation without agreement. In DISC 2002,
LNCS 2508, pp. 17–32, 2002.

[GMW86] O. Goldreich, S. Micali, and A. Wigderson. Proofs that yield nothing but their validity
and a methodology of cryptographic protocol design (extended abstract). In FOCS ’86,
pp. 174–187, 1986.

[GMW87] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game — a com-
pleteness theorem for protocols with honest majority. In STOC ’87, pp. 218–229,
1987.

[Gol04] O. Goldreich. Foundations of Cryptography: Volume 2, Basic Applications. Cam-
bridge University Press, New York, NY, USA, 2004.

[GRR98] R. Gennaro, M. O. Rabin, and T. Rabin. Simplified VSS and fast-track multiparty
computations with applications to threshold cryptography. In PODC ‘98, pp. 101–
111, 1998.

[HM97] M. Hirt and U. Maurer. Complete characterization of adversaries tolerable in secure
multi-party computation. In PODC ’97, pp. 25–34, 1997.

[HM00] M. Hirt and U. Maurer. Player simulation and general adversary structures in perfect
multiparty computation. Journal of Cryptology, 13(1):31–60, 2000.

[IKLP06] Y. Ishai, E. Kushilevitz, Y. Lindell, and E. Petrank. On combining privacy with guaran-
teed output delivery in secure multiparty computation. In CRYPTO 2006, LNCS 4117,
pp. 483–500, 2006.

[Mau02] U. Maurer. Secure multi-party computation made simple. In SCN 2002, LNCS 2576,
pp. 14–28, 2002.

[Mau06] U. Maurer. Secure multi-party computation made simple. Discrete Applied Mathe-
matics, 154(2):370-381, 2006.

[RB89] T. Rabin and M. Ben-Or. Verifiable secret sharing and multiparty protocols with hon-
est majority. In STOC ’89, pp. 73–85, 1989.

[Yao82] A. C. Yao. Protocols for secure computations. In FOCS ’82, pp. 160–164, 1982.

