
Realistic Failures in Secure Multi-Party Computation⋆

Vassilis Zikas1, Sarah Hauser2, and Ueli Maurer1

Department of Computer Science, ETH Zurich, 8092 Zurich, Switzerland
1 {vzikas,maurer}@inf.ethz.ch,

2 shauser@student.ethz.ch

Abstract. In secure multi-party computation, the different ways in which the
adversary can control the corrupted players are described by different corrup-
tion types. The three most common corruption types are active corruption (the
adversary has full control over the corrupted player), passive corruption (the ad-
versary sees what the corrupted player sees) and fail-corruption (the adversary
can force the corrupted player to crashirrevocably). Because fail-corruption is
inadequate for modeling recoverable failures, the so-called omission corruption
was proposed and studied mainly in the context of Byzantine Agreement (BA). It
allows the adversary to selectively block messages sent from and to the corrupted
player, but without actually seeing the message.
In this paper we propose a modular study of omission failuresin MPC, by intro-
ducing the notions ofsend-omission(the adversary can selectively block outgo-
ing messages) andreceive-omission(the adversary can selectively block incom-
ing messages) corruption. We provide security definitions for protocols tolerat-
ing a threshold adversary who can actively, receive-omission, and send-omission
corrupt up tota, tρ, and tσ players, respectively. We show that the condition
3ta + tρ + tσ < n is necessary and sufficient for perfectly secure MPC tolerating
such an adversary. Along the way we provide perfectly secureprotocols for BA
under the same bound. As an implication of our results, we show that an adver-
sary who actively corrupts up tota players and omission corrupts (according to
the already existing notion) up totω players can be tolerated for perfectly secure
MPC if 3ta +2tω < n. This significantly improves a result by Koo in TCC 2006.

1 Introduction

In secure multi-party computation (MPC)n playersp1, . . . , pn wish to securely com-
pute a function of their inputs. The computation should be secure, in the sense that
the output is correct and the privacy of the players’ inputs is not violated. The security
should be guaranteed even when some of the players misbehave. The misbehavior of
players is modeled by assuming a central adversary who corrupts players. The most
typical corruption types are active corruption (the adversary has full control over the
corrupted player), passive corruption (the adversary seeswhatever the player sees), and
fail-corruption (the adversary can make the player crashirrevocably).

⋆ This research was partially supported by the Swiss NationalScience Foundation (SNF), project
no. 200020-113700/1. An extended abstract of this work appeared in TCC 2009.

Realistic Failures in Secure Multi-Party Computation 2

The study of MPC was initiated by Yao [Yao82]. The first general solutions were
given by Goldreich, Micali, and Wigderson [GMW87]; these protocols are secure un-
der some intractability assumptions. Later solutions [BGW88, CCD88, RB89, Bea91b]
provide information-theoretic security.

One of the most studied sub-problems of secure multi-party computation is Byzan-
tine Agreement (BA). BA comes in two flavors, namelyconsensusandbroadcast. In-
formally, consensus guarantees thatn players, each holding an input, can agree on a
common output without destroying pre-agreement. On the other hand, broadcast al-
lows a dedicated player to consistently send his input to every player. BA serves as an
important tool for the design of multi-party protocols.

Failures in MPC. For motivating the different corruption-types one typically thinks of
MPC as each player running his protocol on his (local) computer, where the computers
can communicate over some network (e.g., the Internet). Passive and active corruption
correspond, for example, to (the adversary) planting a spyware or a virus, respectively,
to the player’s computer. Fail-corruption, however, can becriticized as being not so
realistic due to the requirement that the crash is irrevocable. Indeed, in real-world sce-
narios computer-crashes are not irrevocable and are usually fixed soon after they are
discovered, e.g., by replacing the computer.

Corruption types modeling more realistic failures than irrevocable computer-
crashes have been studied in the literature. An example is the so-calledomission cor-
ruptionwhich allows the adversary to selectively block messages sent or received by the
corrupted player, but without seeing the actual message. Omission corruption models
failures that are apparent in many real-world applications, e.g., a computer which might
lose messages while being restarted due to a hang of the operating system. It also mod-
els failures or temporary unavailability of the communication network, e.g., a router’s
buffer overflow, or instability of the links due to a thunderstorm. Partial asynchronity of
the network, i.e., the adversary causing unexpected delayson messages sent from and
to certain players, can also be modeled.

Omission corruption has been primarily studied in the context of fault-tolerant con-
sensus [Had85, PT86, Ray02, PR03] and, recently, also in MPC[Koo06].

Summary of known results.In the seminal papers solving the general MPC problem,
the adversary is specified by a single corruption type (active or passive) and a thresh-
old t on the tolerated number of corrupted players. Goldreich, Micali, and Wigderson
[GMW87] proved that, based on cryptographic intractability assumptions, general se-
cure MPC is possible if and only ift < n/2 players are actively corrupted, or, al-
ternatively, if and only ift < n players are passively corrupted. In the information-
theoretic model, Ben-Or, Goldwasser, and Wigderson [BGW88] and independently
Chaum, Crépeau, and Damgård [CCD88] proved that unconditional security is pos-
sible if and only ift < n/3 for active corruption, and for passive corruption if and only
if t < n/2. These results were unified and extended by fail-corruptionin [FHM98] by
proving that perfectly secure MPC is achievable if and only if 3ta + 2tp + tf < n,
whereta, tp, andtf denote the upper bounds on the number of actively, passivelyand
fail corrupted players, respectively.

A similar development as in MPC can be observed in the area of Byzantine agree-
ment protocols [LSP82, DS82, LF82, MP91, GP92, FM98].

Realistic Failures in Secure Multi-Party Computation 3

The first to consider omission corruption were Perry and Tueg[PT86]. They con-
sidered a threshold adversary who can omission corrupt up tot players and showed that
BA tolerating this adversary is possible if and only ift < n. However their consistency-
guarantee is limited to the outputs of uncorrupted players,i.e., omission corrupted play-
ers are allowed to output arbitrary values. Raynal and Parvedy [Ray02, PR03] proved
that if we require omission corrupted players to output either the correct value (i.e., con-
sistent with the output of uncorrupted players) or no value,then consensus is possible
if and only if 2t < n.

In the context of general MPC, omission corruption was first studied, in combination
with active corruption, by Koo [Koo06]. He considered a threshold adversary who can
actively corrupt up tota players and, simultaneously, omission corrupt up totω players,1

and proved that the conditions3ta + 2tω < n and3ta + 4tω < n are sufficient for
perfectly secure consensus and general MPC, respectively.However, as we show in
Section 9, the condition3ta + 4tω < n is far from optimal.

Our Contributions. We propose a modular study of realistic failures in multi-party
computation, by introducing the notions ofsend-omissionandreceive-omissioncorrup-
tion. As the names suggest, send-omission (resp. receive-omission) corruption allows
the adversary to selectively block only outgoing (resp. only incoming) messages of the
corrupted player, but without seeing the messages (this is consistent with the existent
omission-corruption literature). Note that a player who isomission corrupted according
to the definitions of [PT86, Ray02, PR03, Koo06] can be thought of as a player who is
both send- and receive-omission corrupted at the same time;for clarity we refer to this
type of corruption asfull-omissioncorruption.

We provide security definitions for the model where the adversary can actively,
send-omission, and receive-omission corrupt players, simultaneously. We show that in
this model, an adversary who can actively, receive-omission, and send-omission corrupt
up to ta, tρ, andtσ players, respectively, can be tolerated for perfectly secure MPC if
and only if 3ta + tρ + tσ < n. Along the way, we also construct BA primitives for
the same bound. Our bound implies that the condition3ta + 2tω < n is sufficient for
perfectly secure MPC.

The novelty of our approach is that, unlike past results on fault-tolerant MPC, we
primarily deal with the omissions on the network-level instead of internally in the proto-
col. In particular, using the paradigm of layered communication (e.g., the OSI-model),
first we engineer the actual network to build a new network-layer with better security
guarantees, and then we design protocols in which the players communicate over this
higher network-layer. This approach leads to simpler and more intuitive protocols. For
the construction of our main protocol we also use ideas from the player-elimination
technique [HMP00].

Outline of this paper. In Section 2 we define the model and introduce some notation.
In Section 3 we discuss the security definitions and prove an impossibility result. In
Sections 4 and 5 we show how to get an authenticated network with strong security
guarantees and then build BA protocols over it. In Section 6 we provide tools that will

1 In [Koo06], omission corrupted players are calledconstrainedand actively corrupted are called
corrupted.

Realistic Failures in Secure Multi-Party Computation 4

be used as building blocks for the construction of the SFE andMPC protocols;2 these
protocols are described in Sections 7 and 8, respectively. In Section 9 we look at the
case of full-omission corruption.

2 The Model

We consider the standard secure-channels model introducedin [BGW88, CCD88]: The
players inP = {p1, . . . , pn} are connected by a complete network of bilateral secure
channels. The communication is synchronous, i.e., all players have synchronized clocks
and there is a known upper bound on the delay of the network. The computation is
described as an arithmetic circuit over some finite fieldF, consisting of addition (or
linear) and multiplication gates.

We look at the case ofperfectsecurity, i.e., information-theoreticwithout error prob-
ability. A protocol is defined to be secure if it realizes a trusted functionality (comput-
ing the functionf), where the term “realize” is defined via the simulation paradigm
[Can00, MR91, Bea91a, DM00, PW01] which, in a nutshell, guarantees that whatever
the adversary can achieve in the real world where the protocol is executed, he could
also achieve in the ideal setting with the trusted functionality.3 This security notion im-
plies in particular that the adversary cannot obtain any information about the players’
inputs beyond what is implied by the outputs (privacy), and that he cannot influence the
outputs other than by choosing the inputs of the corrupted players (correctness).

We consider a rushing4 threshold adversary who can actively, receive-omission, and
send-omission corrupt up tota, tρ, andtσ players, respectively. The adversary chooses
the players to corrupt non-adaptively, i.e., before the beginning of the protocol.5

To simplify the description we adopt the following convention: whenever a player
does not receive a message (when expecting one), or receivesa message outside of the
expected range, then the special symbol⊥6∈ F is taken for this message.

Everypi ∈ P can be in one of the following two internal states:aliveor zombie. At
the beginning of the computation every player is alive, which means that he correctly
executes all the protocol instructions (unless he is actively corrupted). Ifpi realizes that
he is receive-omission corrupted, e.g., by receiving fewermessages than what he should
in some round, thenpi sets his internal state to zombie (we say thatpi becomes a zom-
bie). Once the state is set to zombie it never switches back. Azombie behaves in the

2 SFE stands for Secure Function Evaluation, i.e., multi-party computation ofnon-reactivefunc-
tionalities.

3 While our protocols can be proved secure in any of these simulation-based frameworks, with
perfect indistinguishability of the real and the ideal world, we will not give full-fledged
simulation-based security proofs in this paper; this is consistent with the previous literature
on secure SFE and MPC.

4 A rushing adversary is an adversary who, in each round of the protocol,first sees all the
messages sent to actively corrupted players in this round and then decides how the corrupted
players should behave in this round.

5 In contrast, anadaptiveadversary can corrupt more and more players during the protocol
execution, subject only to the constraint that the number ofcorrupted players of each type is
upper-bounded by the corresponding threshold. We do not consider the adaptive setting in this
paper, but our results could be generalized to it.

Realistic Failures in Secure Multi-Party Computation 5

protocols as a player who has crashed, i.e., sends and receives no messages and has no
outputs. However, there are two conceptual differences between zombies and crashed
players: (1) Being a zombie is a self-imposed state and corresponds to a correct behav-
ior, i.e., players become zombies when the protocol (and notthe adversary) instructs
them to; (2) zombie-players are “aware of the actual time”, as they have clocks which
are synchronized with the clocks of the alive players; this will be useful in the context
of reactive computation (Section 8) where time plays an important role.

The setsA, S, R, SR, and H. To simplify the description we denote the sets of ac-
tively, send-omission only, receive-omission only, and full-omission6 (but not actively)
corrupted players byA, S, R, andSR, respectively, and the set of uncorrupted players
by H (H stands for “honest”). Note that these sets are a partition ofthe player setP ,
they are not known to the players and appear only in the security analysis.

3 Security Definition

Intuitively, the security definition for our model should not allow the adversary to do
more with send- and receive-omission corrupted players than to decide which of them
give input to and receive output from the computation, respectively. The strongest secu-
rity one can hope for is to require that the adversary’s decision is taken independently
of the inputs of non actively corrupted players and before seeing the outputs of ac-
tively corrupted players. More precisely one would be interested in securely realizing
the functionality STRONG SFE (see below).7

STRONG SFE - IDEAL MODEL. Each pi ∈ P has inputxi. The function to be
computed isf(·). The adversary decides which of the send-omission (resp. receive-
omission) corrupted players give input to (resp. receive output from) the trusted party
beforeseeing the outputs of actively corrupted players.

1. Everypi ∈ H ∪ R sends his input to the trusted party (TP). Actively corrupted
players might send TP arbitrary inputs as instructed by the adversary. For each
pi ∈ SR ∪ S the adversary decides (without seeingpi’s input) whetherpi sends
TP his input or a default value fromF (e.g.,0). TP denotes the received values by
x′

1, . . . , x
′
n.

2. TP computesf(x′
1, . . . , x

′
n) = (y1, . . . , yn) (if f is randomized then TP internally

generates the necessary random coins). TP asks the adversary which of the players
pi ∈ R ∪ SR should receive their outputyi (without revealing any information
aboutyi).

3. For eachpi ∈ H∪S ∪A, TP sendsyi to pi. For eachpi ∈ R∪SR, TP sendsyi to
pi if the adversary allowed thatpi receives output in the previous step, otherwise
TP sends nothing topi.

6 Recall that a full-omission corrupted player is one who is both send- and receive-omission
corrupted at the same time.

7 We assume that the reader is familiar with the ideal-world/real-world paradigm for defining
security of multi-party protocols [Bea91a, MR91, Can00, DM00, BPW03].

Realistic Failures in Secure Multi-Party Computation 6

We say that a protocolΠ strongly(ta, tρ, tσ)-securely evaluates the functionf if it
securely realizes the functionality STRONG SFE in the presence of an adversary who
can actively, receive-omission, and send-omission corrupt up to ta, tρ, andtσ players,
respectively.

Unfortunately, as stated in the following lemma, when the adversary is rushing then
for any non-trivial choice forta andtρ there exist functions which cannot be perfectly
strongly (ta, tρ, tσ)-securely evaluated. In fact our impossibility result is inherent in
any setting where we have a threshold adversary with active (or even just passive) and
receive-omission corruption, simultaneously. In particular it also applies to the (non-
adaptive) case of active and full-omission corruption [Koo06].8 The idea is the follow-
ing: the adversary might, with non-zero probability, corrupt the playerpi who is the
first (or among the first) to get the output, e.g., by randomly choosing whom to corrupt.
In this case, as she is rushing, she can decide, depending on the output, whether the
receive-omission corrupted players get full information on the output or not. However,
the simulator has to take this decision without seeing the outputs of corrupted players,
and hence he is not able to perfectly simulate this behavior.

Lemma 1. If ta > 0 andtρ > 0 and the adversary is rushing, then there exist functions
which cannot be perfectly strongly(ta, tρ, ·)-securely evaluated. The statement holds
even when we have passive instead of active corruption.

Proof. Consider the identity function, where every playerpi ∈ P inputs some valuexi,
and the public output is the vector→

x = (x1, . . . , xn). Towards contradiction, assume
that there exists a perfectly(ta, tρ, tσ)-secure SFE protocol for this function, where
ta, tρ > 0. This protocol implicitly defines for everypk ∈ P a round in whichpk

receives full information on the output. Letφ(k) denote this round. The adversary has
the following strategy: He picks two playerpi andpj to corrupt actively and receive-
omission, respectively. Up to roundφ(i) the adversary instructs the playerspi andpj

to correctly follow the protocol ’s instructions. In roundφ(i) the adversary learns the
output →

x . Wlog we assume thati, j 6= 1. If x1 = 1 then the adversary blocks all
incoming communication towardspj for the rest of the protocol including the messages
sent topj in roundφ(i) (the adversary can do that as he is rushing). Asφ(j) ≥ φ(i)

with some non zero probability, ifx1 = 1 thenpj outputs some
→

x′ 6=
→
x . However,

the (ideal world) simulator does not knowx1 and cannot simulate this behavior. This
creates a difference in the output distribution of the real and the ideal world, which
contradicts the claimed perfect security of the protocol. Note that the proof also works
whenpi is only passively corrupted as the adversary only uses his corruption onpi to
learn the output. ⊓⊔

We relax the definition of the functionality to allow the adversary to decide which
receive-omission corrupted players receive output, even after having seen the outputs of
actively corrupted players (and possibly depending on those outputs). Our relaxation is
minimal as Lemma 1 suggests. We call the resulting functionality SFE (see next page).

8 In [Koo06] the assumed adversary is also rushing and the (non-adaptive) ideal-world function-
ality requires the adversary to decide which omission corrupted players receive output before
seeing the outputs of actively corrupted players.

Realistic Failures in Secure Multi-Party Computation 7

SFE – IDEAL MODEL. Eachpi ∈ P has inputxi. The function to be computed isf(·).
The adversary decides which of the receive-omission corrupted players receive output
from the trusted partyafterreceiving the outputs of actively corrupted players.

1. Everypi ∈ H ∪ R sends his input to the trusted party (TP). Actively corrupted
players might send TP arbitrary inputs as instructed by the adversary. For each
pi ∈ SR ∪ S the adversary decides (without seeingpi’s input) whetherpi sends
TP his input or a default value fromF (e.g.,0). TP denotes the received values by
x′

1, . . . , x
′
n.

2. TP computesf(x′
1, . . . , x

′
n) = (y1, . . . , yn) (if f is randomized then TP internally

generates the necessary random coins). For eachpi ∈ H ∪ S ∪ A, TP sendsyi

to pi.
3. Forpi ∈ R∪SR, TP asks the adversary ifpi should receive his outputyi (without

revealing any information aboutyi), if the answer is yes then TP sendsyi to pi,
otherwise it sends nothing topi.

Definition 1. We say that a protocolΠ (ta, tρ, tσ)-securelyevaluates the functionf
if Π securely realizes the functionalitySFE in the presence of an adversary who can
actively, receive-omission, and send-omission corrupt upto ta, tρ, andtσ players, re-
spectively.

4 Engineering the Network – Authenticated Channels

A source of difficulties in designing protocols tolerating both active cheaters and omis-
sions is that a playerpj who receives⊥ when expecting a message from a playerpi

cannot decide whetherpi is send-omission or actively corrupted, or himself (i.e.,pj)
is receive-omission corrupted. In [Koo06] the following straight-forward approach was
taken in order to overcome this difficulty in the context ofpi sharing a secret: Every
player complains when he received no share from the dealerpi. If more players com-
plain than the number of potentially corrupted players,pi is disqualified. Otherwise,
the players who did not complain pairwise check the consistency of their shares (as
in [BGW88, FHM98]), where inconsistencies are publicly reported and resolved by the
dealer. This approach, however, leads to thresholds on the number of actively and (full)
omission corrupted players which are far from optimal, as discussed in the introduction.

Our approach is different. We deal with this difficulty outside the protocol, on
the network level. In particular, using the paradigm of layered communication (e.g.,
the OSI-model), first we engineer the actual network to get a new network-layer with
stronger guarantees, and then we invoke the actual protocolover this layer.

The protocol which is used to build the new network-layer is calledFixReceive. It
works on the channels of the actual network (the lowest layer), i.e., the secure channels
with omissions, and builds on top of them a network ofauthenticatedchannels (the
higher layer), where for any receive-omission corruptedpi the adversary has to choose
eitherto allowpi to receive all messages that are sent to himor to letpi know that he is
receive-omission corrupted. More precisely,FixReceive guarantees that when somepi

Realistic Failures in Secure Multi-Party Computation 8

sends a messagex to a receive-omission corruptedpj then eitherpj receives it, as if he
were uncorrupted, orpj finds out that he is receive-omission corrupted (and becomesa
zombie). Ifpj becomes a zombie inFixReceive then he notifies everypk ∈ P about this
by sending a bilateral message; this information will be used by the players in future
invocations ofFixReceive. The protocolFixReceive is described in the following. For
the proof of the lemma we refer to the full version of this paper.

ProtocolFixReceive (P, ta, tρ, tσ, pi, pj, x)
1. pi sends his inputx to everypk ∈ P .
2. Eachpk ∈ P forwardsx to pj (if pk received no value, he sends a special symbol

“n/v” to pj); pj denotes the received value asxk (if pk has become a zombie in
the past thenpj setsxk = “n/v”).

3. If |{pk : xk ∈ F∪{“n/v”}}| < n− ta − tσ thenpj becomes zombie (and notifies
all players). Otherwise, if there existsx′ 6∈ {⊥, “n/v”} such that|{pk : xk =
x′}| > ta thenpj outputsx′, otherwisepj outputs⊥.

Lemma 2. If 3ta + tρ + tσ < |P|, protocolFixReceive has the following properties.
If pj is alive at the end of the protocol then he outputs a valuex′, wherex′ ∈ {x,⊥}
unlesspi ∈ A, andx′ = x whenpi ∈ H ∪ R. Moreover,pj might become a zombie
only whenpj ∈ R ∪ SR and when he becomes a zombie every player notices.

Proof. pj becomes a zombie only when he receives< n−ta−tσ values inF∪{“n/v”},
in which case he is receive-omission corrupted. Assume thatpi is not actively corrupted:
Because at most theta actively corrupted players might sendx′ 6= x to pj, pj never
outputsx′ 6∈ {x,⊥}. Whenpi ∈ R∪H is at most receive-omission corrupted each non
actively corruptedpk receives a valuevk ∈ {x,⊥} in Step 1, wherev =⊥ only whenpk

is receive-omission corrupted. Hence, in that case, ifpj receives at leastn − ta − tσ >
2ta + tρ values inF ∪ {“n/v”} then at mostta + tρ of them are notx, which implies
that more thanta of them arex and thereforex′ = x. ⊓⊔

5 Byzantine Agreement

In this section we build primitives solving the Byzantine Agreement (BA) problem,
which we will later use as tools for constructing the main SFEprotocol. BA comes in
two flavors, namelyconsensusandbroadcast. Informally, consensus guarantees thatn
players, each holding an input, can decide on a common outputy, wherey = x if all
non-actively corrupted players had (the same) inputx. On the other hand, broadcast
allows a dedicated playerps holding inputxs, to consistently sendxs to every player.

In our BA protocols, the players communicate over the strengthened authenticated
network which is constructed usingFixReceive. More precisely, wheneverpi ∈ P is
instructed to bilaterally send a message topj ∈ P , the protocolFixReceive is invoked.
Because alive players might become zombies only withinFixReceive, all the designed
protocols have the following property:Only receive-omission corrupted players might
become zombies.The proofs of the lemmas can be found in the full version of thepaper.

Realistic Failures in Secure Multi-Party Computation 9

5.1 Consensus

For constructing a consensus protocol, we use the standard approach [BGP89, FM00]:
We construct weaker consensus primitives, and then composethem in a clever way to
construct the desired consensus primitive. We construct three such weaker primitives
calledWeak Consensus, Graded Consensus, andKing Consensus.

Weak Consensus.Informally, weak consensus guarantees that there are no inconsis-
tencies among the outputs of the non-actively corrupted players, but some of them (even
alive) might have no output (we say that they output⊥). However, we get the guarantee
that if the playerspre-agreedon some valuex, i.e., all non-actively corrupted players
had input (the same)x, then we getpost-agreementon x, i.e., all non-actively cor-
rupted players outputx.9 In the following we describe protocolWeakConsensus which
achieves weak consensus in our model. The input of eachpi ∈ P is denoted asxi

ProtocolWeakConsensus (P, ta, tρ, tσ,
→

x = (x1, . . . , xn))
1. Eachpi ∈ P sendsxi to everypj ∈ P , by invokingFixReceive; pj denotes the

received value byx(i)

j .
2. Eachpj ∈ P sets

yj :=

x , if (|{pi : x(i)

j = x}| ≥ n − ta − tσ − tρ)
∧

(|{pi : x(i)

j 6∈ {x,⊥}}| ≤ ta)

⊥ , otherwise

Lemma 3. If 3ta + tρ + tσ < |P|, the protocolWeakConsensus has the following
properties. Weak Consistency: Every (alive)pj ∈ P \ A outputsyj ∈ {x′,⊥} for
somex′ ∈ F. Correctness: If everypi ∈ P \ A who is alive at the beginning of
WeakConsensus has inputxi = x, thenx′ = x.

Proof. (weak consistency) Assume that somepj ∈ P \ A outputsyj = x′ ∈ F. We
show that, in this case, any (alive)pk ∈ P \ A outputsyk ∈ {x′,⊥}. Indeed, as
pj outputsx′ he received a value not in{x,⊥} from at mostta players. Among the
remaining≥ n − ta players at mostta + tρ + tσ might be corrupted, hence at least
n− 2ta − tρ − tσ > ta are uncorrupted and sentx′ also topk; thereforeyk 6∈ F \ {x′},
i.e., yk ∈ {x′,⊥}. (correctness) Everypj ∈ P \ A who is alive at the end of the
protocol receives the valuex from at least all uncorrupted players (i.e.,|{pi : x(j)

i =
x}| ≥ n− ta − tρ − tσ) and a value not in{x,⊥} only from actively corrupted players
and, therefore, outputsyj = x. ⊓⊔

Graded Consensus.In Graded Consensus eachpi ∈ P outputs a pair(yi, gi), where
yi is pi’s actual output-value andgi ∈ {0, 1} is a bit, calledpi’s grade. The gradegi

has the meaning of the confidence level ofpi on the fact that all non-actively corrupted
players also outputyi. In particular, ifgi = 1 for some non-actively corruptedpi then
yj = yi for every (alive) non-actively corruptedpj ∈ P . Moreover, when the non-
actively corrupted players pre-agreed on a valuex, then they all outputx with grade1.

9 Recall that the zombies send no values in any protocol and receive no output.

Realistic Failures in Secure Multi-Party Computation 10

In the following we describe the protocolGradedConsensus. The idea is to have
the players first invoke the protocolWeakConsensus and then exchange their outputs of
WeakConsensus to decide on the actual output and the corresponding grade.

ProtocolGradedConsensus
(

P, ta, tρ, tσ,
→

x = (x1, . . . , xn)
)

1. InvokeWeakConsensus (P , ta, tρ, tσ,
→
x); pi denotes his output byx′

i.
2. Eachpi ∈ P sendsx′

i to everypj ∈ P by invocation ofFixReceive; pj denotes the
received value byx(i)

j .

3. Eachpj ∈ P setsyj :=

{

x , if there existsx ∈ F s.t. |{pi : x(i)

j = x}| > ta
0 , otherwise

and setsgj :=

1 , if (|{pi : x(i)

j ∈ {yj,⊥}}| ≥ n − ta)
∧

(|{pi : x(i)

j = yj}| ≥ n − ta − tρ − tσ)

0 , otherwise

Lemma 4. If 3ta+tρ+tσ < |P|, protocolGradedConsensus has the following proper-
ties. Graded Consistency: If somepj ∈ P \A outputs(yj, gj) = (y, 1) for somey ∈ F,
then every (alive)pk ∈ P \ A outputs(yk, gk) = (y, gk), wheregk ∈ {0, 1}. Graded
Correctness: If everypi ∈ P \A who is alive at the beginning ofGradedConsensus has
inputxi = x, then every (alive)pj ∈ P \ A outputs(yj , gj) = (x, 1).

Proof. (graded consistency) Assume that somepj ∈ P \ A outputs(yj , gj) = (y, 1)
for somey ∈ F. We show that in Step 2 any (alive) non actively corruptedpk receives
y more thanta times, and receives somey′ ∈ F such thaty′ 6= y at mostta times,
hencepk also outputsyk = y. In deed, aspj outputy with grade1, he received a value
in {y,⊥} from ≥ n − ta players, out of which≥ n − ta − (ta + tσ + tρ) > ta are
uncorrupted and senty also topk (uncorrupted players never send⊥). But, since at least
one uncorrupted player senty as his output ofWeakConsensus, the weak consistency
property guarantees that only actively corrupted (i.e.,≤ ta) players might send a value
y′ 6∈ {y,⊥} topk. (graded correctness): Assume that everypi ∈ P\Awho is alive at the
beginning ofGradedConsensus has inputxi = x. Then by the correctness property of
WeakConsensus every non-actively corruptedpi outputsx′

i = x in Step 1, hence each
pj gets a value in{x,⊥} at leastn−ta times and gets the valuex at leastn−ta−tσ−tρ
times (i.e., from at least all uncorrupted players) and therefore outputsx with grade1.

⊓⊔

King Consensus.In King Consensus there is a distinguished playerpk ∈ P , called the
king. King Consensus guarantees that if the king is uncorrupted,then all non-actively
corrupted players output the same value. Additionally, independent of the king’s cor-
ruption, if the non-actively corrupted players pre-agreedon a valuex, then they all
outputx. The protocolKingConsensus (see next page) is described in the following.

Lemma 5. If 3ta + tρ + tσ < |P|, the protocolKingConsensus has the following
properties. King Consistency: If the kingpk is uncorrupted, then everypj ∈ P \ A
outputsyj = y. Correctness: If everypi ∈ P \ A who is alive at the beginning of
KingConsensus has inputxi = x then they all outputy = x.

Realistic Failures in Secure Multi-Party Computation 11

ProtocolKingConsensus (P, ta, tρ, tσ,
→

x = (x1, . . . , xn), pk)
1. InvokeGradedConsensus(P , ta, tρ, tσ,

→
x); pi denotes his output by(x′

i, gi).
2. The kingpk sendsx′

k to everypj ∈ P by invocation ofFixReceive.
3. Eachpj ∈ P sets

yj; =

{

x′
j , if (gj = 1) or (pk sentx′

k =⊥)
x′

k , otherwise

Proof. (king consistency) Assume that the kingpk is uncorrupted. We consider two
cases: (1) Everypj ∈ P \ A who is alive at the end ofGradedConsensus (Step 1) has
gradegj = 0, and (2) somepj ∈ P \ A outputs(yj , gj) = (y, 1) in GradedConsensus.
In both cases the kingpk consistently sends his outputx′

k of GradedConsensus to all
players. Therefore, In Case 1 everypℓ ∈ P \ A adopt this value, whereas in Case 2 the
graded consistency ofGradedConsensus guarantees that everypℓ ∈ P \ A (including
the king) output(yℓ, gℓ) = (x, ·) in GradedConsensus and it is irrelevant whether or not
they adopt the king’s input. (correctness) If all (alive) non-actively corrupted players
have the same inputx then by the correctness property ofGradedConsensus all non
actively corrupted players outputx with grade1 in Step 1 and stick to this output. ⊓⊔

Consensus.Building a consensus protocol from king consensus is straight-forward:
InvokeKingConsensus with ta + tρ + tσ + 1 different players as king, where the input
of thei-th iteration is the output of the(i−1)-th iteration. As there are at mostta + tρ +
tσ corrupted players, at least one of the kings will be uncorrupted, hence consistency
on the output value will be achieved in the corresponding iteration; the correctness of
KingConsensus guarantees that this value will not be changed in any future iteration.
Note that when we have pre-agreement on some value then consistency on this value is
achieved from the first iteration independent of the king.

Lemma 6. If 3ta + tρ + tσ < |P|, the protocolConsensus has the following properties.
Consistency: All (alive)pi ∈ P \ A output (the same)y ∈ F. Correctness: If every
pi ∈ P \ A who is alive at the beginning ofConsensus has inputxi = x theny = x.

Proof. (correctness) By the correctness property ofKingConsensus, if all alive players
have the same input, then at the end of each iteration all (still alive) non actively cor-
rupted players output (the same)x and enter the next iteration with thisx. Therefore, at
the end, all synchronized players outputx. (consistency) AsKingConsensus is invoked
with ta + tρ + tσ + 1 different kings, at least one of them, saypk will be uncorrupted,
hence by the king-consistency property, at the end of the iteration of KingConsensus

with king pk all players output the same valuey. By the correctness ofKingConsensus,
the agreement ony will be maintained until the end of the protocol. ⊓⊔

5.2 Broadcast

The standard approach for achieving broadcast when consensus is given, is to have the
senderps send his input to every player, and then run consensus on the received values.
Unfortunately, this generic approach does not work in our setting, as it provides no guar-
antees when a send-omission corruptedps fails to send his input to some uncorrupted
players.

Realistic Failures in Secure Multi-Party Computation 12

To guarantee that a non actively corruptedps never broadcasts a wrong value we ex-
tend the above generic protocol by adding the following steps:ps sends a confirmation
bit to every player, i.e., a bitb whereb = 1 if ps agrees with the output of the consen-
sus andb = 0 otherwise; subsequently, the players invoke consensus on the received
bits to establish a consistent view on the confirmation-bit and they accept the output of
the generic broadcast protocol only if this bit equals1, otherwise they output⊥. This
results in the protocolBroadcast (see next page).

ProtocolBroadcast (P, ta, tρ, tσ, ps, x)
1. ps sendsx to everypj ∈ P (by FixReceive), who denotes the received value byxj

(xj = 0 if pj received⊥).
2. The players invokeConsensus on the received values. Letyj denotepj ’s output.
3. Eachpj sendsyj to ps (by FixReceive).
4. ps sends a confirmation bitb to everypi ∈ P (by FixReceive), whereb = 1 if

ps receivedyj = x from more thatta players in the previous step andb = 0
otherwise;pi denotes the received bit bybi (bi = 0 if pi received⊥).

5. InvokeConsensus (P , ta, tσ, tρ, (b1, . . . , bn)). For eachpi ∈ P , if pi’s output in
Consensus is 1 thenpi outputsyi, otherwise he outputs⊥.

Lemma 7. If 3ta + tρ + tσ < |P|, protocolBroadcast has the following properties.
Consistency: All (alive)pj ∈ P \ A output the (same) valueyj = y. Correctness:
y ∈ {x,⊥} whenps ∈ P \ A, wherey = x whenps ∈ H ∪ R and he is alive at the
end of the protocol, andy =⊥ whenps has been a zombie from the beginning of the
protocol.

Proof. (consistency) Consistency of the output is guaranteed by the consistency prop-
erty of Consensus. Indeed, when the invocation ofConsensus in Step 5 outputs0 then
every (alive)pi ∈ P \ A outputs⊥; otherwise everypi ∈ P \ A outputsyi, whereyi

is pi’s output in the invocation ofConsensus in Step 2. (correctness) Whenps has been
a zombie from the beginning of the protocol, then in Step 4 every (alive) pi ∈ P \ A
setsbi = 0, and, by the correctness property ofConsensus, everypi ∈ P \ A outputs
0 in Consensus (in Step 5), and therefore outputs⊥ in Broadcast. Assume for the re-
maining of the proof thatps ∈ P \ A and he is alive at the beginning of the protocol.
Whenps ∈ H∪R, then by inspection of the protocol it is easy to verify that the output
of Broadcast will be x. It remains to be shown that whenps ∈ S ∪ SR then the output
is in {x,⊥}: We consider the following two cases: (1)ps becomes a zombie before
the execution of Step 4, and (2)ps is alive at the beginning of Step 4. In Case 1 every
(alive)pi ∈ P \ A setsbi = 0 hence, by correctness ofConsensus in Step 5, the output
will be ⊥. For Case 2, if the correctpi’s outputyi = x in Step 2 then the output of
Broadcast will be x or ⊥ depending on whether the output ofConsensus in Step 5 is
1 or 0, respectively; otherwise, in Step 4ps receives at mostta timesx (i.e., only from
the corrupted players) and therefore sends0 (or⊥) to everypi in which case the output
of Broadcast will be ⊥. ⊓⊔

Realistic Failures in Secure Multi-Party Computation 13

6 Tools

In this section we describe sub-protocols that will be used as building-blocks in the
construction of the main SFE and MPC protocols. Some of the sub-protocols are non-
robust, and might abort with a non-empty setB ⊆ P . When they abort, then all (alive)
players inP notice it and they also learn the setB. As in the case of BA, some alive
players might become zombies during the invocation of the sub-protocols, but only
when they are receive-omission corrupted.

6.1 Secret Sharing

A secret sharing scheme allows a player, called thedealer, to distribute his input among
the players in some player setP , so that only qualified sets of players can reconstruct
it. As usual in the threshold adversary literature, we use Shamir-sharings for sharing
values: With eachpi ∈ P a unique publicly knownαi ∈ F is associated. A secrets
is t-sharedamong the players inP when there exists a degree-t polynomialq(·) with
q(0) = s, and every non actively corruptedpi ∈ P holdssi ∈ {q(αi),⊥}, where
si = q(αi) unlesspi is receive-omission corrupted. The valuesi is pi’s shareof s. We
refer to the vector of shares, denoted by〈s〉 = (s1, . . . , sn), as at-sharing of s.

We say that〈s〉 is at-consistentsharing ofs among the players inP if there exists
a degree-t polynomialq(·) such that each non actively corruptedpi ∈ P holds share
si ∈ {q(αi),⊥}. We say that〈s〉 is at-valid sharing ofs among the players inP , if 〈s〉
is t-consistent and for some degree-t polynomialq(·) with q(0) = s, each uncorrupted
pi ∈ P holds sharesi = q(αi).

ProtocolShare allows a dealerp to t-share his input among the players in any setP .
Essentially it is a passive Shamir-sharing protocol:p picks a degree-t uniformly ran-
dom polynomialq(·) and sendsq(αi) to pi. The following lemma states the achieved
security.

Lemma 8. ProtocolShare(P , t, p, s) has the following properties. Correctness: When
p ∈ P \ A thenShare outputs at-consistent sharing〈s〉 of s among the players inP ,
where〈s〉 is event-valid unlessp ∈ A ∪ S ∪ SR or unlessp is a zombie. Privacy: The
players in any setP ′ ⊆ P with |P ′| ≤ t get no (joint) information ons.

Proof. (correctness) Whenp ∈ P \ A then he correctly computes the shares according
to some degree-t polynomialq(·), therefore everypi ∈ P \ A gets eitherq(αi) or
⊥, and〈s〉 is a t-consistent sharing ofs. When, additionally,p 6∈ A ∪ S ∪ SR, i.e.,
p ∈ H∪R, then only receive-omission corrupted players might not receive their share,
therefore〈s〉 is t-valid. (privacy) As the sharing-polynomialq(·) is a uniformly random
polynomial of degreet, anyt points on it give no information abouts. ⊓⊔

In the following we describe the protocolsPublicReconstruct andReconstruct used
to reconstruct a shared value publicly and towards some output playerp, respectively.
The protocols take as input a sharing of a value among the players in someP ′ (P ′ might
be different thanP). In protocolReconstruct (resp.PublicReconstruct) everypi ∈ P ′

sends his share top (resp. broadcasts his share toP) and thenp (resp. everypj ∈ P)
reconstructs the shared value using standard error correction. Due to their similarity we

Realistic Failures in Secure Multi-Party Computation 14

only describe protocolReconstruct and state the security of both protocols in a joint
lemma.

ProtocolReconstruct (P′, t, t′, p, 〈s〉)
1. Eachpi ∈ P ′ sends his sharesi to p.
2. p finds, using standard polynomial interpolation techniques, a degreet polynomial

f(·) with the property that more thant + t′ of the received shares lie onf(·) and
outputss′ = f(0). If no such polynomial exists thenpj outputs⊥.

Lemma 9. Assume that there existstc such that there are at mosttc corrupted players
in P ′, of whom at mostt′ are actively corrupted and the conditiont + t′ + tc < |P ′|
holds. Then the protocolReconstruct (resp.PublicReconstruct)10 reconstructs a value
s′ towards playerp (resp. towards everypj ∈ P), wheres′ ∈ {s,⊥} if 〈s〉 is a t-
consistent sharing ofs among the players inP ′, ands′ = s if 〈s〉 is t-valid.

Proof. The interpolation algorithm in Step 2 outputss′ = f(0) for some degreet
polynomialf(·), if and only if the values sent by more thant + t′ players lie onf(·).
As non actively corrupted players never sends wrong values,this implies that the shares
of more thant non actively corrupted players lie onf(·). Hence, if〈s〉 is at-consistent
sharing ofs, i.e., there exists a degreet polynomialq(·) with q(0) = s such that each
non actively corruptedpi ∈ P holds sharesi ∈ {q(αi),⊥}, then clearlyq(·) = f(·).
When in addition〈s〉 is t-valid then all uncorrupted players hold shares that lie on
f(·). As t + t′ + tc < |P ′|, and at mosttc players are corrupted, there are more than
t+ t′ uncorrupted players who correctly send their share and therefore the interpolation
algorithm outputsf(0) = s. ⊓⊔

6.2 Engineering the network - Secure Channels

The trick of engineering the network allowed us to reduce theeffect of receive-omission
corruption. However, because the channels which we achieveprovide no privacy guar-
antees, we cannot use the resulting network directly to build a perfectly secure SFE pro-
tocol. In the following, we show how to engineer the initial network of secure channels
to get a new network-layer (also of secure channels) with stronger security guarantees.

The new network layer will allow anypj ∈ P who receives⊥ instead of a message
x frompi ∈ P to decide whether he (i.e.,pj) is receive-omission corrupted or the sender
pi is corrupted. Additionally, when the reception fails because ofpi, then every (alive)
player will recognize thatpi is (actively or send-omission) corrupted. GivenBroadcast

and a uniformly random keyki,j ∈ F known exclusively topi and pj, this can be
achieved as follows: Forpi to privately sends to pj , pi useski,j as a one time pad to
perfectly blinds, and broadcasts the blinded values + ki,j . Because onlypi andpj

know ki,j , only pj can unblind the broadcasted message and any other player gets no
information about it. As syntactic sugar, we denote this protocol asPrivBroadcast.

10 ForPublicReconstruct we need to assume a broadcast primitive, which when3ta + tσ + tρ <

|P| we can instantiate byBroadcast.

Realistic Failures in Secure Multi-Party Computation 15

In the remaining of this section we concentrate on enabling two playerspi and
pj to establish a secret keyki,j (to use inPrivBroadcast). We design two proto-
cols, calledWeakExchangeKey and ExchangeKey, which achieve the following:
WeakExchangeKey uses the bilateral secure channels and allows any pairpi, pj ∈ P
to exchange a key as long asone of themis at most receive-omission corrupted (i.e.,
is in H ∪R) andthe other oneis at most send-omission corrupted (i.e., is inH ∪ S).
ProtocolExchangeKey uses protocolsWeakExchangeKey andBroadcast and allows
pi andpj to exchange a key, even wheneach of themis eitherat most receive-omission
or at most send-omission corrupted. Both protocols work in a publicly detectable way,
i.e., all (alive) players notice whether or not the key-exchange worked. In the following
we describe the protocolsWeakExchangeKey andExchangeKey in more detail.

ProtocolWeakExchangeKey is based on the observation that whenpi is at most
send-omission andpj is at most receive-omission corrupted, thenpj can always se-
curely send messages topi through the bilateral secure channel. The protocol works as
follows: pi andpj choose uniformly random valueski ∈ F andkj ∈ F, respectively,
and exchange them over their bilateral channel. Subsequently, each of them publicly
announces, byBroadcast, whether or not he received a value from the other. If any of
them confirms reception of a value then this value is used as the secret key and the
protocol succeeds; otherwise the protocol fails.WeakExchangeKey is non-robust and
might abort with a setB ∈ {{pi}, {pj}}, but only whenpi and/orpj broadcast⊥ (if
they both broadcast⊥ take the one with the smallest index). The detailed description
of WeakExchangeKey and the proof of the following lemma can be found in the full
version.

ProtocolWeakExchangeKey (P, ta, tρ, tσ, pi, pj)
1. pi andpj pick valueski ∈ F andkj ∈ F, respectively, uniformly at random.
2. pi andpj exchange the valueski andkj (over the bilateral channel).
3. Each of the playerspi andpj broadcasts “ok” if he received a valuekj andki,

respectively, from the other player and “not ok” otherwise.
4. (output): All players outputsuccess if any of the playerspi andpj broadcasted

“ok” and they outputfailure, otherwise. When the output issuccess, then
both pi andpj additionally outputkj if pi broadcasted “ok” in Step 3, andki

otherwise.
5. If pi or pj broadcasts⊥ in any step of the protocol then the protocol aborts with

B = {pℓ}, wherepℓ ∈ {pi, pj} is the one with the smaller index among the
players who broadcast⊥.

Lemma 10. If 3ta + tρ + tσ < |P|, protocolWeakExchangeKey has the following
properties. Correctness: Either it succeeds inpi andpj exchanging a uniformly random
keyk, or it fails, or it aborts with setB ∈ {{pi}, {pj}}. It might abort withB only when
B ⊆ R ∪ S ∪ SR ∪A. When it does not abort then the following hold: (1) Every alive
pk ∈ P sees whether the protocol succeeded or failed, and (2) it always succeeds when
pi ∈ H ∪ R andpj ∈ H ∪ S or vice versa (i.e., whenpi ∈ H ∪ S andpj ∈ H ∪ R).
Privacy: The adversary gets no information onk (unlesspi or pj is actively corrupted).

Proof. First observe that condition3ta + tσ + tρ < n is sufficient for protocol
Broadcast. (correctness)WeakExchangeKey aborts withB = {pℓ} only whenpℓ

Realistic Failures in Secure Multi-Party Computation 16

broadcasts⊥ in some step, in which case the correctness property ofBroadcast ensures
thatpℓ ∈ S ∪ SR ∪A. When the protocol does not abort, i.e., bothpi andpj broadcast
a value in{“ok” , “not ok”} in Step 3, then whenpi ∈ H ∪ R andpj ∈ H ∪ S, pj

receives the keykj from pi and broadcasts “ok”, therefore the protocol cannot fail (the
casepi ∈ H ∪R andpj ∈ H ∪ S is handled symmetrically). (privacy) Privacy follows
trivially from the the perfect privacy of the bilateral channels. ⊓⊔

We describe the protocolExchangeKey (see below) and state its achieved se-
curity in a lemma. The protocol is non-robust and might abortwith set B ∈
{{pi}, {pj}, {pi, pj}}. However, from the fact that it aborted the players can deduce
useful information on the corruption of the players inB.

ProtocolExchangeKey (P, ta, pi, pj)
1. For ℓ ∈ {i, j}: pℓ invokes WeakExchangeKey with every pr ∈ P . If

WeakExchangeKey aborts withB, thenExchangeKey also aborts withB. Denote
by P ℓ

“ok” ⊆ P the set of players who successfully exchanged keys withpℓ, and by
P“ok” := (P i

“ok” ∩ P j
“ok”). If |P“ok” | ≤ 2ta thenExchangeKey aborts withB = {pi, pj}.

2. For ℓ ∈ {i, j}: pℓ picks a valuekℓ ∈R F uniformly at random and a degree
ta random polynomialfℓ(·) with fℓ(0) = kℓ. For eachpr ∈ P“ok” , pℓ sends, by
invoking PrivBroadcast with the exchanged keys, the sharefℓ(αr) to pr, who
denotes the received value ass(ℓ)

r . If pℓ broadcast⊥ thenExchangeKey aborts
with B = {pℓ} (if both pi andpj broadcast⊥ take the one with the smallest
index).

3. The players inP“ok” compute a sharing of the sumki + kj , by each player (lo-
cally) adding his shares, and then publicly reconstruct it by PublicReconstruct. If
PublicReconstruct outputs⊥ thenExchangeKey aborts withB = {pi, pj}. Oth-
erwise, bothpi andpj takeki to be their shared key.

Lemma 11. If 3ta + tρ + tσ < |P|, the protocolExchangeKey has the following prop-
erties. Correctness: Eitherpi andpj succeed in exchanging a uniformly random keyk
(and all players notice) or the protocol aborts with a setB ∈ {{pi}, {pj}, {pi, pj}}. It
might abort with setB only if one of the following two cases holds: (1)|B| = 1 and
B ⊆ R∪S ∪SR∪A and (2)|B| = 2 andB ∩ (SR∪A) 6= ∅. Privacy: The adversary
gets no information onk (unlesspi or pj is actively corrupted).

6.3 ProtocolSFE(BC)

The last tool is a protocol, calledSFE(BC), which perfectly securely evaluates any given
function f without fairness but with unanimous abort [GL02]. In particular, protocol
SFE(BC) either perfectly(ta, tρ, tσ)-securely evaluates the functionf , or it aborts with
setB ∈ {{pi}, {pj}, {pi, pj}} for somepi, pj ∈ P . The adversary might force the pro-
tocol to abort even after receiving the outputs of actively corrupted players. However,
when it aborts every player learns useful information aboutthe corruption of the players
in B.

Realistic Failures in Secure Multi-Party Computation 17

The idea is the following: LetΠP,t(·) denote a protocol which perfectlyt-securely
evaluates any given function, in the presence of an adversary who can (only) actively
corrupt up tot players.11 Such a protocol is known to exist if3t < n [BGW88]. Also, let
Cf denote the arithmetic circuit which computes a given functionf . To securely eval-
uateCf , protocolSFE(BC) invokes protocolΠP,t(Cf) over the engineered network of
secure channels. More precisely, eachpi ∈ P executes the instructions ofΠP,t(Cf)
with the following modification: wheneverpi is instructed to bilaterally send a message
x to somepj ∈ P , protocolExchangeKey(P , pj, pj) is invoked to havepi andpj ex-
change a uniformly random key, and then the messagex is sent usingPrivBroadcast

with the established key; wheneverpi is instructed to broadcast a message, he invokes
Broadcast. If some invocation ofExchangeKey aborts withB or somepi ∈ P broad-
casts⊥ (in this case we setB = {pi}) thenSFE(BC) aborts withB.

In the following lemma we state the security ofSFE(BC). The proof follows directly
from the perfectt-security of protocolΠP,t(·) and the perfect security of protocols
ExchangeKey andBroadcast. SFE(BC) is parametrized by a single threshold, namelyt,
but it assumes as given the primitivesBroadcast andExchangeKey as specified in Lem-
mas 7 and 11, respectively.12

Lemma 12. GivenBroadcast andExchangeKey, assuming that the condition3t < |P|
holds protocolSFE(BC)(P , t, Cf) has the following properties. Correctness: Either it
perfectly(t, tσ, tρ)-securely evaluates the circuitCf among the players inP for any
tσ, tρ < n, or it aborts with a setB ⊆ P . It might abort with setB only when one of
the following two cases holds: (1)|B| = 1 andB ⊆ R ∪ S ∪ SR ∪A and (2)|B| = 2
andB ∩ (SR∪A) 6= ∅. Privacy: The adversary does not get no more information than
what he can compute from the specified inputs and outputs of actively corrupted players
(i.e., from the inputs and outputs she should get when the protocol does not abort).

7 SFE

In this section we prove the necessary and sufficient condition for perfectly(ta, tρ, tσ)-
securely evaluating any given functionf(·), namely we prove the following theorem:

Theorem 1. Perfectly(ta, tρ, tσ)-secure SFE is possible if and only if3ta+tρ+tσ < n.

The necessity of the condition follows, with some additional work, from the neces-
sity of the conditions3ta < n for SFE [BGW88]; we state the necessity in the following
lemma which is proved in the full version of this paper.

Lemma 13. If 3ta + tρ + tσ ≥ n then there are functions which cannot be perfectly
(ta, tρ, tσ)-securely evaluated.

11 Here, t-secure evaluation is according to any of the standard security definition (with fair-
ness and guaranteed output delivery) of protocols tolerating an active-only adversary [MR91,
Can00, DM00, BPW03].

12 In slight abuse of notation here, we writeBroadcast andExchangeKey to refer not to the
protocols but to primitives achieving the security specified in Lemmas 7 and 11 (independent
of pre-conditions). To be able to instantiate them with our protocols we will have to guarantee
that the pre-conditions of the lemmas are satisfied.

Realistic Failures in Secure Multi-Party Computation 18

Proof. We show that when3ta + tρ + tσ ≥ n then BA amongn players is not possible.
Towards contradiction assume that3ta + tρ + tσ ≥ n and there is a BA protocol which
is perfectly(ta, tρ, tσ)-secure amongn playersp1, . . . , pn. It is easy to verify that this
protocol should also be perfectlyta-secure amongn − tρ − tσ players, by considering
an adversary who send-omission corrupts the playersp1, . . . , ptσ

and receive omission
corrupt the playersptσ+1, . . . , ptσ+tρ

, and drops all incoming (resp. outgoing) commu-
nication of the receive-omission (resp. send-omission) corrupted players . However, as
n − tρ − tσ ≤ 3ta such a protocol cannot exist [BGW88]. ⊓⊔

The sufficiency is proved by constructing an SFE protocol forcomputing any given
function f . For simplicity, we assume thatf takes one input per player and has one
global output. Using standard techniques, we can obtain a protocol for computing func-
tions with multiple inputs and/or multiple or even private outputs.

On a high level, the evaluation of the functionf proceeds in three stages: In the first
stage, called theinput stage, everypi ∈ P ta-shares his input to the players inP . Next,
in thecomputation stage, the players useSFE(BC) to compute a randomta-sharing of
the output of the functionf . Finally, in theoutput stage, this sharing is reconstructed
towards every player usingReconstruct. In the remaining of this section we describe in
detail the three stages, and give a detailed description of protocolSFE.

The input stage In this stage protocolShare is invoked to have eachpi ∈ P ta-share
his inputs(i) to the players inP . Denote the resulting sharing by〈s(i)〉. The security of
Share guarantees that for any non actively corruptedpi 〈s(i)〉 is ata-consistent sharing
of s(i) , where〈s(i)〉 is event-valid whenpi ∈ H ∪R.

The computation stageThe goal is to securely compute, usingSFE(BC), a uniformly
randomta-valid sharingof the output off on input the values that where shared in the
input stage. This stage is non-robust and might abort with a player setB ⊆ P , when
SFE(BC) aborts withB. When it aborts, the players use the information about the set
B, which is provided by Lemma 12, to repeat this stage in a smaller setting, i.e., among
the players inP ′ := P \ B. The security ofSFE(BC) guarantees that, even when it
aborts, the adversary learns at most the outputs of activelycorrupted players, which,
as they are shares of a (uniformly random)ta-sharing, give her no information on the
input-sharings. Hence, in the successful iteration ofSFE(BC), both the inputs of actively
corrupted players and the decision of which send-omission corrupted players give their
inputs are independent of the inputs of non actively corrupted players.

Initially P ′ := P andt′a := ta. ProtocolSFE(BC) is invoked with player setP ′ and
thresholdt′a, to compute the circuitCta

〈f〉 which does the following:Cta
〈f〉 takes as input

from eachpj ∈ P ′ his share of each of the input-sharings〈s(1)〉, . . . , 〈s(n)〉. For each
such sharing〈s(i)〉: Cta

〈f〉 attempts, exactly as in protocolReconstruct, to reconstruct
the shared value; if the reconstruction succeeds it setsŝi to the reconstructed value,
otherwise it setŝsi to a default value (e.g.,̂si := 0). Note that fort = t′a, t′ = t′a, and
tc = t′a + tσ + tρ all the sufficient conditions forReconstruct are satisfied; therefore,
Cta

〈f〉 correctly reconstructs the input of everypi ∈ H ∪ R (which is t-valid), and for
everypi ∈ S ∪ SR it either reconstructspi’s input or it takes a default value (since
the sharing ofpi is a t-consistent sharing of his input). Having computed the values

Realistic Failures in Secure Multi-Party Computation 19

ŝ1, . . . , ŝn, Cta
〈f〉 inputs them to the circuit computingf ; denote the output byy. Finally,

Cta
〈f〉 computes and outputs a uniformly randomta-valid sharing ofy among the players

in P ′. We point out that the circuitCta
〈f〉 can be efficiently computed from the circuit

which computes the functionf [IKLP06].
To be able to re-invokeSFE(BC) in P ′ = P ′ \ B when it aborts withB, we need to

guarantee that in the updatedP ′: (1) the condition3t′a < |P ′|, which is sufficient for
SFE(BC), holds and (2) no inputs of non actively corrupted players are lost. To ensure
Property (1), we use the idea ofplayer elimination[HMP00]:13 The security ofSFE(BC)

guarantees that when it aborts with setB, then either|B| = 1 andB ⊆ R∪S ∪SR∪A
or |B| = 2 andB∩ (SR∪A) 6= ∅. Therefore, by eliminating the players inB we might
only change the ratio of uncorrupted vs. actively corruptedplayers inP ′ in favor of the
uncorrupted players. However, as the setP ′ becomes smaller, the players might have to
reduce the actual thresholdt′a. To be on the safe side,t′a is reduced only when at least as
many players as there can be send-/receive-omission corrupted have been eliminated.
Property (2) is guaranteed because, first, theta-consistency andta-validity of input
sharings cannot be destroyed by deleting players and, second, the newly computedt′a
satisfies, as we show, the sufficient condition forReconstruct.

The output stage The players invokeReconstruct with the (latest)t′a to reconstruct
the sharing created in the successful iteration ofSFE(BC). Because the protocolSFE(BC)

outputs ata-valid sharing of the output, and, as we will show,t′a satisfies the sufficient
condition for protocolReconstruct, the reconstruction is robust. For completeness we
describe the protocolSFE (see below) and state the achieved security in the follow-
ing lemma.

ProtocolSFE (P, ta, tρ, tσ, f)
0. SetP ′ := P , andt′a := ta.
1. For eachpi∈ P invokeShare(P , ta, pi, xi). Eachpj ∈ P denotes the vector of all

shares he received by→x (j) .
2. The players inP ′ invoke SFE(BC)(P ′, t′a, Cta

〈f〉),where eachpi ∈ P ′ has in-
put →

x (j) .a If SFE(BC) aborts withB, then setP ′ = P ′ \ B, set t′a := ta −

max{0, ⌈ |P\P′|−(tσ+tρ)
2 ⌉} and repeat this step; otherwise denote by〈f〉 the out-

put sharing.
3. For eachpj ∈ P invokeReconstruct(P ′, ta, t′a, pj , 〈f〉).

a The required invocations ofBroadcast andExchangeKey are done in the player setP .

Lemma 14. ProtocolSFE is perfectly(ta, tρ, tσ)-secure if3ta + tρ + tσ < |P|.

Proof (sketch).Termination is guaranteed because Step 2 is repeated at mostta+tσ+tρ
times (in each repetition at least one corrupted player is removed fromP ′). Correctness
follows from the security of the invoked sub-protocols; however one needs to verify that

13 To our knowledge, this is the first work which uses the idea of player elimination not for
improving efficiency but rather for arguing about feasibility of protocols.

Realistic Failures in Secure Multi-Party Computation 20

the corresponding sufficient conditions hold whenever theyare invoked. This follows
from a player-elimination argument; for modularity of the presentation we prove this
argument separately in Proposition 1. Privacy follows alsofrom the security of the
invoked subprotocols and from the fact that all the sharingsthat we do are of degreeta
(except of those done internally inSFE(BC) whose privacy is guaranteed by the security
of SFE(BC)), therefore they leak no information to the adversary aboutthe inputs. ⊓⊔

Proposition 1. If 3ta + tρ + tσ < n then all the sufficient conditions for the invocation
of every sub-protocols withinSFE are satisfied.

Proof. The security of the protocolsBroadcast andExchangeKey which are invoked
in SFE(BC) is guaranteed, as they are always run in the player setP . We show thatt′a,
as computed in Step 2, satisfies the sufficient conditions forSFE(BC) andReconstruct.
Consider the iteration in the player setP ′ ⊆ P ; denote byE = P \ P ′ the set of elim-
inated players. We argue thatt′a := ta − max{0, δE}, whereδE = ⌈ |E|−(tσ+tρ)

2 ⌉, is
a choice satisfying the conditions of Lemmas 9 and 12. In particular, we show thatt′a
satisfies the following properties: (1)t′a is an upper bound to the number of actively cor-
rupted players, and (2) there existstc such that there are at mosttc corrupted players in
P ′ andta+t′a+tc < |P ′| (becauset′a ≤ ta andt′a ≤ tc this also implies that3t′a < |P ′|
which is sufficient forSFE(BC)). Property 1 follows from a player elimination argument:
First observe that the total number of possible “corruptionoperation” inP is at most
ta + tσ + tρ (a corruption operation corresponds to the adversary corrupting a player in
exactly one type, e.g., a full-omission corrupted player counts for two corruption oper-
ations, one for send- and one for receive-omission corruption). The security ofSFE(BC)

ensures that for each uncorrupted player inE \ (R ∪ S) there exists at least one other
player inE\(R∪S) who is either both send- and receive-omission corrupted or actively
corrupted. As there can be at mosttρ + tσ send-/receive-omission corruption-operation
in E , there are at leastmax{0, δE} active corruption operation inE . Thereforet′a is an
upper bound in the number of actively corrupted players inP ′. For Property 2, we show
that it is satisfied fortc = ta + tρ + tσ − (|E| − tEa), wheretEa is the actual number
of actively corrupted players inE :14 First we observe that there are at least|E| − tEa
corruption operations inE , which implies thattc is an upper bound on the number of
corruption operations inP ′. Hence we only need to show thatta + t′a + tc ≤ |P ′|.
This can be seen as follows: Because there can be at mosttσ + tρ send- and receive-
corruption operations inE we havetEa − max{0, δE} ≥ 0. Using these observation we
getta + t′a + tc ≤ ta +(ta−max{0, δE})+ ta + tσ + tρ − (|E|− tEa) < n−|E| = |P ′|,
which completes the argument. ⊓⊔

As already mentioned, when the adversary is rushing there are functions that cannot
be strongly(ta, tρ, tσ)-securely evaluated, except in trivial corruption scenarios (i.e., if
ta = 0 or tσ = 0). However, when the adversary is non-rushing the above protocol can
be used to achieve strong security. Indeed, before the output stage, the adversary gains
no useful information. As protocolReconstruct is single round, if, within the output
stage, we run it in parallel for everypi ∈ P , then a non-rushing adversary has to choose
which receive-omission corrupted players do not get enoughmessages to reconstruct

14 Note thattEa is not necessarily known to the players and appears only in the security analysis.

Realistic Failures in Secure Multi-Party Computation 21

the output before getting any information about the output.This implies strong security.
We point out that the necessity of condition3ta + tρ + tσ < n for SFE is independent
of whether or not the adversary is rushing.

Corollary 1. Assuming that the adversary in non-rushing, perfectlystrongly
(ta, tρ, tσ)-secure SFE is possible if and only3ta + tρ + tσ < n.

8 Computing Reactive Circuits (MPC)

In this section we show how to compute reactive functionalities, i.e., functionalities that
receive inputs from and give outputs to the players several times during the computa-
tion (an output can depend on all previous inputs). An important consideration when
computing a reactive functionality, is to make sure that theplayers can keep a secret
joint state.

The circuit to be computed consists of input, output, addition, and multiplication
gates.15 We model the reactiveness of the computation by assigning toeach gate a point
in time in which the gate should be evaluated. The circuit is evaluated in a gate-by-gate
fashion, using protocolSFE, where the evaluation of each gate (except for the output
gates) yields a uniformly randomta-valid sharing of the output of the gate among the
players inP . Keeping state is guaranteed by the fact that such a sharing is robustly
reconstructible, e.g., by using protocolReconstruct, given that the condition3ta + tσ +
tρ < n holds (Lemma 9). The privacy of the state is guaranteed, as there are at mostta
actively corrupted players.

To evaluate addition and multiplication gates, protocolSFE(BC) is invoked to com-
pute the circuitsC〈Mult〉 andC〈Add〉, respectively, which on inputta-valid sharings of
the inputsx1 andx2 of the gate output a uniformly randomta-valid sharing of the sum
x1+x2 and of the productx1 ·x2, respectively. For an output gate, protocolReconstruct

is invoked (withP ′ = P , andt = t′ = ta) to reconstruct the shared output towards the
output player.

To evaluate an input gate, protocolSFE is invoked to evaluate the circuitC〈I〉 which
takes as input the input of the corresponding player (and no value from other players)
and computes a uniformly randomta-valid sharing of it among the players inP . Excep-
tionally in the evaluation of input gates,eventhe zombies are required to take part as if
they were alive. This is possible as all players (including zombies) hold synchronized
clocks, and are aware of when it is time to evaluate an input gate.16 Instructing the zom-
bies to “wake up” during the evaluation of input gates ensures that everypi ∈ H ∪ R,
even if he is a zombie, is able to give input to the computation. When the evaluation of
the gate finishes, all zombies “sleep” again, i.e., they stopplaying (until the next input
gate). The security of the MPC protocol follows from the security of protocolsSFE

andReconstruct.

15 This does not exclude probabilistic circuits, as a random gate can be simulated by having each
player input a random value and taking the sum of the inputs asthe output of the gate.

16 A zombie might re-become zombie during the evaluation of theinput gate, in which case he
gives up the evaluation of the gate.

Realistic Failures in Secure Multi-Party Computation 22

Theorem 2. Perfectly (ta, tρ, tσ)-secure (reactive) MPC is possible if and only if
3ta + tσ + tρ < n.

As in the case ofSFE, when the adversary is non-rushing, then by evaluating in
parallel each tuple of output gates that are due to be evaluated at the same time, we get
a strongly perfectly secure MPC protocol.

Corollary 2. Assuming that the adversary in non-rushing, perfectly strongly
(ta, tρ, tσ)-secure (reactive) MPC is possible if an only if3ta + tρ + tσ < n.

9 (Full) Omission Corruption

Our results can be trivially used to obtain sufficient boundsfor MPC and SFE in the
presence of an adversary who can full-omission corrupt up totω players and, simulta-
neously, actively corruptedta players (as in [Koo06]). Indeed, by settingtσ = tρ = tω
in our MPC protocols, we get a protocol which perfectly(ta, tω)-securely realized any
function when3ta + 2tω < n. Note that this bound is strictly better than the bound
3ta + 4tω < n which was proved sufficient in [Koo06].

Lemma 15. Perfectly(ta, tω)-secure (even reactive) MPC is possible if3ta + 2tω < n.

10 Extensions

Our results can be extended to deal with adversaries who can,additionally, passively
and fail-corrupt players; denote bytp andtf the corresponding thresholds. The proof
of the following lemma is omitted, but we give some evidence of its validity: Fail-
corruption comes almost “for free” as in our protocol a fail-corrupted players behaves
exactly as a receive-omission corrupted player with the only difference that, instead
of turning him into a zombie the adversary can make him crash.To incorporate pas-
sive corruption we need to do the following modifications: (1) the degree of the shares
that are computed inSFE is increased bytp; (2) for SFE(BC), instead of invoking, over
the engineered network, the protocolΠP,t(·) [BGW88] which tolerates only actively-
corruption, we use a protocol which tolerates both active and passive corruption, si-
multaneously. Such a protocol is known to exist if3ta + 2tp < n [FHM98]. These
modifications will guarantee privacy of our computation.

Lemma 16. Perfectly(ta, tp, tf , tρ, tσ)-secureMPC is possible if and only if3ta +
2tp + tσ + tρ + tf < n.

Using techniques from Secure Message Transmission [DDWY93], we can extend
our results to allow every (even uncorrupted)pi ∈ P to suffer from some message loss,
as long as we have the following guarantee: in every round every pi ∈ H ∪ S might
lose at mostta of the messages sent to him by playerspj ∈ H ∪R.

Acknowledgments We would like to thank Martin Hirt for many useful discussions
and comments.

Realistic Failures in Secure Multi-Party Computation 23

References

[Bea91a] D. Beaver. Foundations of secure interactive computing. In CRYPTO ’91,
LNCS 576, pp. 377–391, 1991.

[Bea91b] D. Beaver. Secure multiparty protocols and zero-knowledge proof systems toler-
ating a faulty minority.Journal of Cryptology, 4(2):370–381, 1991.

[BGP89] P. J. Berman, J. Garray, and J. Perry. Towards optimal distributed consensus. In
FOCS ’89, pp. 410–415, 1989.

[BGW88] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In STOC ’88, pp. 1–10, 1988.

[BPW03] M. Backes, B. Pfitzmann, and M. Waidner. A universally composable crypto-
graphic library, 2003.

[Can00] R. Canetti. Security and composition of multipartycryptographic protocols.Jour-
nal of Cryptology, 13(1):143–202, 2000.

[CCD88] D. Chaum, C. Crépeau, and I. Damgård. Multiparty unconditionally secure proto-
cols (extended abstract). InSTOC ’88, pp. 11–19, 1988.

[DDWY93] D. Dolev, C. Dwork, O. Waarts, and M. Yung. Perfectly secure message transmis-
sion. Journal of the ACM, 40(1):17–47, January 1993.

[DM00] Y. Dodis and S. Micali. Parallel reducibility for information-theoretically secure
computation. InCRYPTO 2000, LNCS 1880, pp. 74–92, 2000.

[DS82] D. Dolev and H. R. Strong. Polynomial algorithms for multiple processor agree-
ment. InSTOC ’82, pp. 401–407, 1982.

[FHM98] M. Fitzi, M. Hirt, and U. Maurer. Trading correctness for privacy in unconditional
multi-party computation. InCRYPTO ’98, LNCS 1462, pp. 121–136, 1998. Cor-
rected version is available online.

[FM98] M. Fitzi and U. Maurer. Efficient Byzantine agreementsecure against general
adversaries. InDISC ’98, LNCS 1499, pp. 134–148, 1998.

[FM00] M. Fitzi and U. Maurer. From partial consistency to global broadcast. In
STOC 2000, pp. 494–503, 2000.

[GL02] S. Goldwasser and Y. Lindell. Secure computation without agreement. In
DISC 2002, LNCS 2508, pp. 17–32, 2002.

[GMW87] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game — a
completeness theorem for protocols with honest majority. In STOC ’87, pp. 218–
229, 1987.

[GP92] J. A. Garay and K. J. Perry. A continuum of failure models for distributed com-
puting. In Distributed Algorithms, 6th International Workshop — WDAG’92,
LNCS 647, pp. 153–165, 1992.

[Had85] V. Hadzilacos. Issues of fault tolerance in concurrent computations (databases,
reliability, transactions, agreement protocols, distributed computing). PhD thesis,
Cambridge, MA, USA, 1985.

[HMP00] M. Hirt, U. Maurer, and B. Przydatek. Efficient secure multi-party computation.
In ASIACRYPT 2000, LNCS 1976, pp. 143–161, 2000.

[IKLP06] Y. Ishai, E. Kushilevitz, Y. Lindell, and E. Petrank. On combining privacy with
guaranteed output delivery in secure multiparty computation. In CRYPTO 2006,
LNCS 4117, pp. 483–500, 2006.

[Koo06] C.-Y. Koo. Secure computation with partial messageloss. In TCC 2006,
LNCS 3876, pp. 502–521, 2006.

[LF82] L. Lamport and M. J. Fischer. Byzantine generals and transaction commit proto-
cols. Technical Report Opus 62, SRI International (Menlo Park CA), TR, 1982.

Realistic Failures in Secure Multi-Party Computation 24

[LSP82] L. Lamport, R. Shostak, and M. Pease. The byzantine generals problem.ACM
Transactions on Programming Languages and Systems, 4(3):382–401, 1982.

[MP91] F. J. Meyer and D. K. Pradhan. Consensus with dual failure modes.IEEE Trans-
actions on Parallel and Distributed Systems, 2(2):214–222, 1991.

[MR91] S. Micali and P. Rogaway. Secure computation. InCRYPTO ’91, LNCS 576, pp.
392–404, 1991.

[PR03] P. R. Parvedy and M. Raynal. Uniform agreement despite process omission
failures. InInternational Symposium on Parallel and Distributed Processing —
IPDPS 2003, pp. 212.2, 2003.

[PT86] K. J. Perry and S. Toueg. Distributed agreement in thepresence of processor and
communication faults.IEEE Trans. Softw. Eng., 12(3):477–482, 1986.

[PW01] B. Pfitzmann and M. Waidner. A model for asynchronous reactive systems and its
application to secure message transmission. InIEEE Symposium on Security and
Privacy, pp. 184–200, 2001.

[Ray02] M. Raynal. Consensus in synchronous systems: A concise guided tour. InPacific
Rim International Symposium on Dependable Computing — PRDC2002, pp. 221,
2002.

[RB89] T. Rabin and M. Ben-Or. Verifiable secret sharing and multiparty protocols with
honest majority. InSTOC ’89, pp. 73–85, 1989.

[Yao82] A. C. Yao. Protocols for secure computations. InFOCS ’82, pp. 160–164, 1982.

